mirror of openzeppelin-contracts
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
openzeppelin-contracts/contracts/utils/structs/Heap.sol

578 lines
23 KiB

// SPDX-License-Identifier: MIT
// This file was procedurally generated from scripts/generate/templates/Heap.js.
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
import {Comparators} from "../Comparators.sol";
import {Panic} from "../Panic.sol";
/**
* @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as
* https://en.wikipedia.org/wiki/Priority_queue[priority queue].
*
* Heaps are represented as an array of Node objects. This array stores two overlapping structures:
* * A tree structure where the first element (index 0) is the root, and where the node at index i is the child of the
* node at index (i-1)/2 and the father of nodes at index 2*i+1 and 2*i+2. Each node stores the index (in the array)
* where the corresponding value is stored.
* * A list of payloads values where each index contains a value and a lookup index. The type of the value depends on
* the variant being used. The lookup is the index of the node (in the tree) that points to this value.
*
* Some invariants:
* ```
* i == heap.data[heap.data[i].index].lookup // for all indices i
* i == heap.data[heap.data[i].lookup].index // for all indices i
* ```
*
* The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the
* highest priority value is the one at the root. This value can be looked up in constant time (O(1)) at
* `heap.data[heap.data[0].index].value`
*
* The structure is designed to perform the following operations with the corresponding complexities:
*
* * peek (get the highest priority value): O(1)
* * insert (insert a value): O(log(n))
* * pop (remove the highest priority value): O(log(n))
* * replace (replace the highest priority value with a new value): O(log(n))
* * length (get the number of elements): O(1)
* * clear (remove all elements): O(1)
*/
library Heap {
using Math for *;
using SafeCast for *;
/**
* @dev Binary heap that support values of type uint256.
*
* Each element of that structure uses 2 storage slots.
*/
struct Uint256Heap {
Uint256HeapNode[] data;
}
/**
* @dev Internal node type for Uint256Heap. Stores a value of type uint256.
*/
struct Uint256HeapNode {
uint256 value;
uint64 index; // position -> value
uint64 lookup; // value -> position
}
/**
* @dev Lookup the root element of the heap.
*/
function peek(Uint256Heap storage self) internal view returns (uint256) {
// self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
return _unsafeNodeAccess(self, self.data[0].index).value;
}
/**
* @dev Remove (and return) the root element for the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(Uint256Heap storage self) internal returns (uint256) {
return pop(self, Comparators.lt);
}
/**
* @dev Remove (and return) the root element for the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(
Uint256Heap storage self,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint256) {
unchecked {
uint64 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
uint64 last = size - 1;
// get root location (in the data array) and value
Uint256HeapNode storage rootNode = _unsafeNodeAccess(self, 0);
uint64 rootIdx = rootNode.index;
Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
Uint256HeapNode storage lastNode = _unsafeNodeAccess(self, last);
uint256 rootDataValue = rootData.value;
// if root is not the last element of the data array (that will get popped), reorder the data array.
if (rootIdx != last) {
// get details about the value stored in the last element of the array (that will get popped)
uint64 lastDataIdx = lastNode.lookup;
uint256 lastDataValue = lastNode.value;
// copy these values to the location of the root (that is safe, and that we no longer use)
rootData.value = lastDataValue;
rootData.lookup = lastDataIdx;
// update the tree node that used to point to that last element (value now located where the root was)
_unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
}
// get last leaf location (in the data array) and value
uint64 lastIdx = lastNode.index;
uint256 lastValue = _unsafeNodeAccess(self, lastIdx).value;
// move the last leaf to the root, pop last leaf ...
rootNode.index = lastIdx;
_unsafeNodeAccess(self, lastIdx).lookup = 0;
self.data.pop();
// ... and heapify
_siftDown(self, last, 0, lastValue, comp);
// return root value
return rootDataValue;
}
}
/**
* @dev Insert a new element in the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(Uint256Heap storage self, uint256 value) internal {
insert(self, value, Comparators.lt);
}
/**
* @dev Insert a new element in the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(
Uint256Heap storage self,
uint256 value,
function(uint256, uint256) view returns (bool) comp
) internal {
uint64 size = length(self);
if (size == type(uint64).max) Panic.panic(Panic.RESOURCE_ERROR);
self.data.push(Uint256HeapNode({index: size, lookup: size, value: value}));
_siftUp(self, size, value, comp);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(Uint256Heap storage self, uint256 newValue) internal returns (uint256) {
return replace(self, newValue, Comparators.lt);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(
Uint256Heap storage self,
uint256 newValue,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint256) {
uint64 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
// position of the node that holds the data for the root
uint64 rootIdx = _unsafeNodeAccess(self, 0).index;
// storage pointer to the node that holds the data for the root
Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
// cache old value and replace it
uint256 oldValue = rootData.value;
rootData.value = newValue;
// re-heapify
_siftDown(self, size, 0, newValue, comp);
// return old root value
return oldValue;
}
/**
* @dev Returns the number of elements in the heap.
*/
function length(Uint256Heap storage self) internal view returns (uint64) {
return self.data.length.toUint64();
}
/**
* @dev Removes all elements in the heap.
*/
function clear(Uint256Heap storage self) internal {
Uint256HeapNode[] storage data = self.data;
/// @solidity memory-safe-assembly
assembly {
sstore(data.slot, 0)
}
}
/**
* @dev Swap node `i` and `j` in the tree.
*/
function _swap(Uint256Heap storage self, uint64 i, uint64 j) private {
Uint256HeapNode storage ni = _unsafeNodeAccess(self, i);
Uint256HeapNode storage nj = _unsafeNodeAccess(self, j);
uint64 ii = ni.index;
uint64 jj = nj.index;
// update pointers to the data (swap the value)
ni.index = jj;
nj.index = ii;
// update lookup pointers for consistency
_unsafeNodeAccess(self, ii).lookup = j;
_unsafeNodeAccess(self, jj).lookup = i;
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the leafs of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `length`
* and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These
* parameters are not verified. It is the caller role to make sure the parameters are correct.
*/
function _siftDown(
Uint256Heap storage self,
uint64 size,
uint64 pos,
uint256 value,
function(uint256, uint256) view returns (bool) comp
) private {
uint256 left = 2 * pos + 1; // this could overflow uint64
uint256 right = 2 * pos + 2; // this could overflow uint64
if (right < size) {
// the check guarantees that `left` and `right` are both valid uint64
uint64 lIndex = uint64(left);
uint64 rIndex = uint64(right);
uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
uint256 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
if (comp(lValue, value) || comp(rValue, value)) {
uint64 index = uint64(comp(lValue, rValue).ternary(lIndex, rIndex));
_swap(self, pos, index);
_siftDown(self, size, index, value, comp);
}
} else if (left < size) {
// the check guarantees that `left` is a valid uint64
uint64 lIndex = uint64(left);
uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
if (comp(lValue, value)) {
_swap(self, pos, lIndex);
_siftDown(self, size, lIndex, value, comp);
}
}
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the root of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
* could be extracted from `self` and `pos`, but that would require redundant storage read. These parameters are not
* verified. It is the caller role to make sure the parameters are correct.
*/
function _siftUp(
Uint256Heap storage self,
uint64 pos,
uint256 value,
function(uint256, uint256) view returns (bool) comp
) private {
unchecked {
while (pos > 0) {
uint64 parent = (pos - 1) / 2;
uint256 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
if (comp(parentValue, value)) break;
_swap(self, pos, parent);
pos = parent;
}
}
}
function _unsafeNodeAccess(
Uint256Heap storage self,
uint64 pos
) private pure returns (Uint256HeapNode storage result) {
assembly ("memory-safe") {
mstore(0x00, self.slot)
result.slot := add(keccak256(0x00, 0x20), mul(pos, 2))
}
}
/**
* @dev Binary heap that support values of type uint208.
*
* Each element of that structure uses 1 storage slots.
*/
struct Uint208Heap {
Uint208HeapNode[] data;
}
/**
* @dev Internal node type for Uint208Heap. Stores a value of type uint208.
*/
struct Uint208HeapNode {
uint208 value;
uint24 index; // position -> value
uint24 lookup; // value -> position
}
/**
* @dev Lookup the root element of the heap.
*/
function peek(Uint208Heap storage self) internal view returns (uint208) {
// self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
return _unsafeNodeAccess(self, self.data[0].index).value;
}
/**
* @dev Remove (and return) the root element for the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(Uint208Heap storage self) internal returns (uint208) {
return pop(self, Comparators.lt);
}
/**
* @dev Remove (and return) the root element for the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(
Uint208Heap storage self,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint208) {
unchecked {
uint24 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
uint24 last = size - 1;
// get root location (in the data array) and value
Uint208HeapNode storage rootNode = _unsafeNodeAccess(self, 0);
uint24 rootIdx = rootNode.index;
Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
Uint208HeapNode storage lastNode = _unsafeNodeAccess(self, last);
uint208 rootDataValue = rootData.value;
// if root is not the last element of the data array (that will get popped), reorder the data array.
if (rootIdx != last) {
// get details about the value stored in the last element of the array (that will get popped)
uint24 lastDataIdx = lastNode.lookup;
uint208 lastDataValue = lastNode.value;
// copy these values to the location of the root (that is safe, and that we no longer use)
rootData.value = lastDataValue;
rootData.lookup = lastDataIdx;
// update the tree node that used to point to that last element (value now located where the root was)
_unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
}
// get last leaf location (in the data array) and value
uint24 lastIdx = lastNode.index;
uint208 lastValue = _unsafeNodeAccess(self, lastIdx).value;
// move the last leaf to the root, pop last leaf ...
rootNode.index = lastIdx;
_unsafeNodeAccess(self, lastIdx).lookup = 0;
self.data.pop();
// ... and heapify
_siftDown(self, last, 0, lastValue, comp);
// return root value
return rootDataValue;
}
}
/**
* @dev Insert a new element in the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(Uint208Heap storage self, uint208 value) internal {
insert(self, value, Comparators.lt);
}
/**
* @dev Insert a new element in the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(
Uint208Heap storage self,
uint208 value,
function(uint256, uint256) view returns (bool) comp
) internal {
uint24 size = length(self);
if (size == type(uint24).max) Panic.panic(Panic.RESOURCE_ERROR);
self.data.push(Uint208HeapNode({index: size, lookup: size, value: value}));
_siftUp(self, size, value, comp);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(Uint208Heap storage self, uint208 newValue) internal returns (uint208) {
return replace(self, newValue, Comparators.lt);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(
Uint208Heap storage self,
uint208 newValue,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint208) {
uint24 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
// position of the node that holds the data for the root
uint24 rootIdx = _unsafeNodeAccess(self, 0).index;
// storage pointer to the node that holds the data for the root
Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
// cache old value and replace it
uint208 oldValue = rootData.value;
rootData.value = newValue;
// re-heapify
_siftDown(self, size, 0, newValue, comp);
// return old root value
return oldValue;
}
/**
* @dev Returns the number of elements in the heap.
*/
function length(Uint208Heap storage self) internal view returns (uint24) {
return self.data.length.toUint24();
}
/**
* @dev Removes all elements in the heap.
*/
function clear(Uint208Heap storage self) internal {
Uint208HeapNode[] storage data = self.data;
/// @solidity memory-safe-assembly
assembly {
sstore(data.slot, 0)
}
}
/**
* @dev Swap node `i` and `j` in the tree.
*/
function _swap(Uint208Heap storage self, uint24 i, uint24 j) private {
Uint208HeapNode storage ni = _unsafeNodeAccess(self, i);
Uint208HeapNode storage nj = _unsafeNodeAccess(self, j);
uint24 ii = ni.index;
uint24 jj = nj.index;
// update pointers to the data (swap the value)
ni.index = jj;
nj.index = ii;
// update lookup pointers for consistency
_unsafeNodeAccess(self, ii).lookup = j;
_unsafeNodeAccess(self, jj).lookup = i;
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the leafs of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `length`
* and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These
* parameters are not verified. It is the caller role to make sure the parameters are correct.
*/
function _siftDown(
Uint208Heap storage self,
uint24 size,
uint24 pos,
uint208 value,
function(uint256, uint256) view returns (bool) comp
) private {
uint256 left = 2 * pos + 1; // this could overflow uint24
uint256 right = 2 * pos + 2; // this could overflow uint24
if (right < size) {
// the check guarantees that `left` and `right` are both valid uint24
uint24 lIndex = uint24(left);
uint24 rIndex = uint24(right);
uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
uint208 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
if (comp(lValue, value) || comp(rValue, value)) {
uint24 index = uint24(comp(lValue, rValue).ternary(lIndex, rIndex));
_swap(self, pos, index);
_siftDown(self, size, index, value, comp);
}
} else if (left < size) {
// the check guarantees that `left` is a valid uint24
uint24 lIndex = uint24(left);
uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
if (comp(lValue, value)) {
_swap(self, pos, lIndex);
_siftDown(self, size, lIndex, value, comp);
}
}
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the root of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
* could be extracted from `self` and `pos`, but that would require redundant storage read. These parameters are not
* verified. It is the caller role to make sure the parameters are correct.
*/
function _siftUp(
Uint208Heap storage self,
uint24 pos,
uint208 value,
function(uint256, uint256) view returns (bool) comp
) private {
unchecked {
while (pos > 0) {
uint24 parent = (pos - 1) / 2;
uint208 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
if (comp(parentValue, value)) break;
_swap(self, pos, parent);
pos = parent;
}
}
}
function _unsafeNodeAccess(
Uint208Heap storage self,
uint24 pos
) private pure returns (Uint208HeapNode storage result) {
assembly ("memory-safe") {
mstore(0x00, self.slot)
result.slot := add(keccak256(0x00, 0x20), pos)
}
}
}