You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
12 KiB
331 lines
12 KiB
// SPDX-License-Identifier: MIT
|
|
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Arrays.sol)
|
|
|
|
pragma solidity ^0.8.20;
|
|
|
|
import {StorageSlot} from "./StorageSlot.sol";
|
|
import {Math} from "./math/Math.sol";
|
|
|
|
/**
|
|
* @dev Collection of functions related to array types.
|
|
*/
|
|
library Arrays {
|
|
using StorageSlot for bytes32;
|
|
|
|
/**
|
|
* @dev Sort an array (in memory) in increasing order.
|
|
*
|
|
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
|
|
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
|
|
*
|
|
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
|
|
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
|
|
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
|
|
* consume more gas than is available in a block, leading to potential DoS.
|
|
*/
|
|
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
|
|
_quickSort(array, 0, array.length);
|
|
return array;
|
|
}
|
|
|
|
/**
|
|
* @dev Performs a quick sort on an array in memory. The array is sorted in increasing order.
|
|
*
|
|
* Invariant: `i <= j <= array.length`. This is the case when initially called by {sort} and is preserved in
|
|
* subcalls.
|
|
*/
|
|
function _quickSort(uint256[] memory array, uint256 i, uint256 j) private pure {
|
|
unchecked {
|
|
// Can't overflow given `i <= j`
|
|
if (j - i < 2) return;
|
|
|
|
// Use first element as pivot
|
|
uint256 pivot = unsafeMemoryAccess(array, i);
|
|
// Position where the pivot should be at the end of the loop
|
|
uint256 index = i;
|
|
|
|
for (uint256 k = i + 1; k < j; ++k) {
|
|
// Unsafe access is safe given `k < j <= array.length`.
|
|
if (unsafeMemoryAccess(array, k) < pivot) {
|
|
// If array[k] is smaller than the pivot, we increment the index and move array[k] there.
|
|
_swap(array, ++index, k);
|
|
}
|
|
}
|
|
|
|
// Swap pivot into place
|
|
_swap(array, i, index);
|
|
|
|
_quickSort(array, i, index); // Sort the left side of the pivot
|
|
_quickSort(array, index + 1, j); // Sort the right side of the pivot
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @dev Swaps the elements at positions `i` and `j` in the `arr` array.
|
|
*/
|
|
function _swap(uint256[] memory arr, uint256 i, uint256 j) private pure {
|
|
assembly {
|
|
let start := add(arr, 0x20) // Pointer to the first element of the array
|
|
let pos_i := add(start, mul(i, 0x20))
|
|
let pos_j := add(start, mul(j, 0x20))
|
|
let val_i := mload(pos_i)
|
|
let val_j := mload(pos_j)
|
|
mstore(pos_i, val_j)
|
|
mstore(pos_j, val_i)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @dev Searches a sorted `array` and returns the first index that contains
|
|
* a value greater or equal to `element`. If no such index exists (i.e. all
|
|
* values in the array are strictly less than `element`), the array length is
|
|
* returned. Time complexity O(log n).
|
|
*
|
|
* NOTE: The `array` is expected to be sorted in ascending order, and to
|
|
* contain no repeated elements.
|
|
*
|
|
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
|
|
* support for repeated elements in the array. The {lowerBound} function should
|
|
* be used instead.
|
|
*/
|
|
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
|
|
uint256 low = 0;
|
|
uint256 high = array.length;
|
|
|
|
if (high == 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (low < high) {
|
|
uint256 mid = Math.average(low, high);
|
|
|
|
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
// because Math.average rounds towards zero (it does integer division with truncation).
|
|
if (unsafeAccess(array, mid).value > element) {
|
|
high = mid;
|
|
} else {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
|
|
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
|
|
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
|
|
return low - 1;
|
|
} else {
|
|
return low;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @dev Searches an `array` sorted in ascending order and returns the first
|
|
* index that contains a value greater or equal than `element`. If no such index
|
|
* exists (i.e. all values in the array are strictly less than `element`), the array
|
|
* length is returned. Time complexity O(log n).
|
|
*
|
|
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
|
|
*/
|
|
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
|
|
uint256 low = 0;
|
|
uint256 high = array.length;
|
|
|
|
if (high == 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (low < high) {
|
|
uint256 mid = Math.average(low, high);
|
|
|
|
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
// because Math.average rounds towards zero (it does integer division with truncation).
|
|
if (unsafeAccess(array, mid).value < element) {
|
|
// this cannot overflow because mid < high
|
|
unchecked {
|
|
low = mid + 1;
|
|
}
|
|
} else {
|
|
high = mid;
|
|
}
|
|
}
|
|
|
|
return low;
|
|
}
|
|
|
|
/**
|
|
* @dev Searches an `array` sorted in ascending order and returns the first
|
|
* index that contains a value strictly greater than `element`. If no such index
|
|
* exists (i.e. all values in the array are strictly less than `element`), the array
|
|
* length is returned. Time complexity O(log n).
|
|
*
|
|
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
|
|
*/
|
|
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
|
|
uint256 low = 0;
|
|
uint256 high = array.length;
|
|
|
|
if (high == 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (low < high) {
|
|
uint256 mid = Math.average(low, high);
|
|
|
|
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
// because Math.average rounds towards zero (it does integer division with truncation).
|
|
if (unsafeAccess(array, mid).value > element) {
|
|
high = mid;
|
|
} else {
|
|
// this cannot overflow because mid < high
|
|
unchecked {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return low;
|
|
}
|
|
|
|
/**
|
|
* @dev Same as {lowerBound}, but with an array in memory.
|
|
*/
|
|
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
|
|
uint256 low = 0;
|
|
uint256 high = array.length;
|
|
|
|
if (high == 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (low < high) {
|
|
uint256 mid = Math.average(low, high);
|
|
|
|
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
// because Math.average rounds towards zero (it does integer division with truncation).
|
|
if (unsafeMemoryAccess(array, mid) < element) {
|
|
// this cannot overflow because mid < high
|
|
unchecked {
|
|
low = mid + 1;
|
|
}
|
|
} else {
|
|
high = mid;
|
|
}
|
|
}
|
|
|
|
return low;
|
|
}
|
|
|
|
/**
|
|
* @dev Same as {upperBound}, but with an array in memory.
|
|
*/
|
|
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
|
|
uint256 low = 0;
|
|
uint256 high = array.length;
|
|
|
|
if (high == 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (low < high) {
|
|
uint256 mid = Math.average(low, high);
|
|
|
|
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
// because Math.average rounds towards zero (it does integer division with truncation).
|
|
if (unsafeMemoryAccess(array, mid) > element) {
|
|
high = mid;
|
|
} else {
|
|
// this cannot overflow because mid < high
|
|
unchecked {
|
|
low = mid + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return low;
|
|
}
|
|
|
|
/**
|
|
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
*
|
|
* WARNING: Only use if you are certain `pos` is lower than the array length.
|
|
*/
|
|
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
|
|
bytes32 slot;
|
|
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
|
|
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
|
|
|
|
/// @solidity memory-safe-assembly
|
|
assembly {
|
|
mstore(0, arr.slot)
|
|
slot := add(keccak256(0, 0x20), pos)
|
|
}
|
|
return slot.getAddressSlot();
|
|
}
|
|
|
|
/**
|
|
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
*
|
|
* WARNING: Only use if you are certain `pos` is lower than the array length.
|
|
*/
|
|
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
|
|
bytes32 slot;
|
|
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
|
|
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
|
|
|
|
/// @solidity memory-safe-assembly
|
|
assembly {
|
|
mstore(0, arr.slot)
|
|
slot := add(keccak256(0, 0x20), pos)
|
|
}
|
|
return slot.getBytes32Slot();
|
|
}
|
|
|
|
/**
|
|
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
*
|
|
* WARNING: Only use if you are certain `pos` is lower than the array length.
|
|
*/
|
|
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
|
|
bytes32 slot;
|
|
// We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
|
|
// following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
|
|
|
|
/// @solidity memory-safe-assembly
|
|
assembly {
|
|
mstore(0, arr.slot)
|
|
slot := add(keccak256(0, 0x20), pos)
|
|
}
|
|
return slot.getUint256Slot();
|
|
}
|
|
|
|
/**
|
|
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
*
|
|
* WARNING: Only use if you are certain `pos` is lower than the array length.
|
|
*/
|
|
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
|
|
assembly {
|
|
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
*
|
|
* WARNING: Only use if you are certain `pos` is lower than the array length.
|
|
*/
|
|
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
|
|
assembly {
|
|
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
*
|
|
* WARNING: Only use if you are certain `pos` is lower than the array length.
|
|
*/
|
|
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
|
|
assembly {
|
|
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
|
|
}
|
|
}
|
|
}
|
|
|