parent
976600dda2
commit
a0fe67398e
@ -0,0 +1,32 @@ |
|||||||
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
|
const snarkjs = require('snarkjs'); |
||||||
|
|
||||||
|
(async () => { |
||||||
|
try { |
||||||
|
// @ts-ignore
|
||||||
|
await remix.call('circuit-compiler', 'generateR1cs', 'circuits/calculate_hash.circom'); |
||||||
|
|
||||||
|
const ptau_final = "https://ipfs-cluster.ethdevops.io/ipfs/QmTiT4eiYz5KF7gQrDsgfCSTRv3wBPYJ4bRN1MmTRshpnW"; |
||||||
|
// @ts-ignore
|
||||||
|
const r1csBuffer = await remix.call('fileManager', 'readFile', 'circuits/.bin/calculate_hash.r1cs', true); |
||||||
|
// @ts-ignore
|
||||||
|
const r1cs = new Uint8Array(r1csBuffer); |
||||||
|
const zkey_final = { type: "mem" }; |
||||||
|
|
||||||
|
console.log('plonk setup') |
||||||
|
await snarkjs.plonk.setup(r1cs, ptau_final, zkey_final) |
||||||
|
|
||||||
|
console.log('exportVerificationKey') |
||||||
|
const vKey = await snarkjs.zKey.exportVerificationKey(zkey_final) |
||||||
|
|
||||||
|
console.log('save zkey_final') |
||||||
|
await remix.call('fileManager', 'writeFile', './zk/keys/plonk/zkey_final.txt', JSON.stringify(Array.from(((zkey_final as any).data)))) |
||||||
|
|
||||||
|
console.log('save verification key') |
||||||
|
await remix.call('fileManager', 'writeFile', './zk/keys/plonk/verification_key.json', JSON.stringify(vKey, null, 2)) |
||||||
|
|
||||||
|
console.log('setup done') |
||||||
|
} catch (e) { |
||||||
|
console.error(e.message) |
||||||
|
} |
||||||
|
})() |
@ -0,0 +1,93 @@ |
|||||||
|
import { ethers, BigNumber } from 'ethers' |
||||||
|
import { poseidon } from "circomlibjs" // v0.0.8
|
||||||
|
|
||||||
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
|
const snarkjs = require('snarkjs'); |
||||||
|
|
||||||
|
const logger = { |
||||||
|
info: (...args) => console.log(...args), |
||||||
|
debug: (...args) => console.log(...args), |
||||||
|
error: (...args) => console.error(...args), |
||||||
|
}; |
||||||
|
|
||||||
|
(async () => { |
||||||
|
try { |
||||||
|
// @ts-ignore
|
||||||
|
await remix.call('circuit-compiler', 'compile', 'circuits/calculate_hash.circom'); |
||||||
|
// @ts-ignore
|
||||||
|
const wasmBuffer = await remix.call('fileManager', 'readFile', 'circuits/.bin/calculate_hash.wasm', { encoding: null }); |
||||||
|
// @ts-ignore
|
||||||
|
const wasm = new Uint8Array(wasmBuffer); |
||||||
|
const zkey_final = { |
||||||
|
type: "mem", |
||||||
|
data: new Uint8Array(JSON.parse(await remix.call('fileManager', 'readFile', './zk/keys/plonk/zkey_final.txt'))) |
||||||
|
} |
||||||
|
|
||||||
|
const wtns = { type: "mem" }; |
||||||
|
const value1 = '1234' |
||||||
|
const value2 = '2' |
||||||
|
const value3 = '3' |
||||||
|
const value4 = '4' |
||||||
|
|
||||||
|
const wrongValue = '5' // put this in the poseidon hash calculation to simulate a non matching hash.
|
||||||
|
|
||||||
|
const signals = { |
||||||
|
value1, |
||||||
|
value2, |
||||||
|
value3, |
||||||
|
value4, |
||||||
|
hash: poseidon([value1, value2, value3, value4]) |
||||||
|
} |
||||||
|
|
||||||
|
console.log('calculate') |
||||||
|
await snarkjs.wtns.calculate(signals, wasm, wtns, logger); |
||||||
|
|
||||||
|
const { proof, publicSignals } = await snarkjs.plonk.prove(zkey_final, wtns); |
||||||
|
|
||||||
|
const vKey = JSON.parse(await remix.call('fileManager', 'readFile', './zk/keys/plonk/verification_key.json')) |
||||||
|
|
||||||
|
const verified = await snarkjs.plonk.verify(vKey, publicSignals, proof); |
||||||
|
|
||||||
|
console.log('zk proof validity', verified); |
||||||
|
const templates = { |
||||||
|
plonk: await remix.call('fileManager', 'readFile', 'templates/plonk_verifier.sol.ejs') |
||||||
|
} |
||||||
|
const solidityContract = await snarkjs.zKey.exportSolidityVerifier(zkey_final, templates) |
||||||
|
|
||||||
|
await remix.call('fileManager', 'writeFile', 'zk/build/plonk/zk_verifier.sol', solidityContract) |
||||||
|
await remix.call('fileManager', 'writeFile', 'zk/build/plonk/input.json', JSON.stringify({ |
||||||
|
_pubSignals: publicSignals, |
||||||
|
_proof: [ |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.A[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.A[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.B[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.B[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.C[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.C[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.Z[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.Z[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.T1[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.T1[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.T2[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.T2[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.T3[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.T3[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.Wxi[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.Wxi[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.Wxiw[0]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.Wxiw[1]).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.eval_a).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.eval_b).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.eval_c).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.eval_s1).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.eval_s2).toHexString(), 32), |
||||||
|
ethers.utils.hexZeroPad(ethers.BigNumber.from(proof.eval_zw).toHexString(), 32), |
||||||
|
] |
||||||
|
}, null, 2)) |
||||||
|
|
||||||
|
console.log('proof done.') |
||||||
|
|
||||||
|
} catch (e) { |
||||||
|
console.error(e.message) |
||||||
|
} |
||||||
|
})() |
@ -0,0 +1,710 @@ |
|||||||
|
// SPDX-License-Identifier: GPL-3.0 |
||||||
|
/* |
||||||
|
Copyright 2021 0KIMS association. |
||||||
|
|
||||||
|
This file is generated with [snarkJS](https://github.com/iden3/snarkjs). |
||||||
|
|
||||||
|
snarkJS is a free software: you can redistribute it and/or modify it |
||||||
|
under the terms of the GNU General Public License as published by |
||||||
|
the Free Software Foundation, either version 3 of the License, or |
||||||
|
(at your option) any later version. |
||||||
|
|
||||||
|
snarkJS is distributed in the hope that it will be useful, but WITHOUT |
||||||
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
||||||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
||||||
|
License for more details. |
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License |
||||||
|
along with snarkJS. If not, see <https://www.gnu.org/licenses/>. |
||||||
|
*/ |
||||||
|
|
||||||
|
|
||||||
|
pragma solidity >=0.7.0 <0.9.0; |
||||||
|
|
||||||
|
import "hardhat/console.sol"; |
||||||
|
|
||||||
|
contract PlonkVerifier { |
||||||
|
// Omega |
||||||
|
uint256 constant w1 = <%=w%>; |
||||||
|
// Scalar field size |
||||||
|
uint256 constant q = 21888242871839275222246405745257275088548364400416034343698204186575808495617; |
||||||
|
// Base field size |
||||||
|
uint256 constant qf = 21888242871839275222246405745257275088696311157297823662689037894645226208583; |
||||||
|
|
||||||
|
// [1]_1 |
||||||
|
uint256 constant G1x = 1; |
||||||
|
uint256 constant G1y = 2; |
||||||
|
// [1]_2 |
||||||
|
uint256 constant G2x1 = 10857046999023057135944570762232829481370756359578518086990519993285655852781; |
||||||
|
uint256 constant G2x2 = 11559732032986387107991004021392285783925812861821192530917403151452391805634; |
||||||
|
uint256 constant G2y1 = 8495653923123431417604973247489272438418190587263600148770280649306958101930; |
||||||
|
uint256 constant G2y2 = 4082367875863433681332203403145435568316851327593401208105741076214120093531; |
||||||
|
|
||||||
|
// Verification Key data |
||||||
|
uint32 constant n = <%=2**power%>; |
||||||
|
uint16 constant nPublic = <%=nPublic%>; |
||||||
|
uint16 constant nLagrange = <%=Math.max(nPublic, 1)%>; |
||||||
|
|
||||||
|
uint256 constant Qmx = <%=Qm[0]%>; |
||||||
|
uint256 constant Qmy = <%=Qm[0] == "0" ? "0" : Qm[1]%>; |
||||||
|
uint256 constant Qlx = <%=Ql[0]%>; |
||||||
|
uint256 constant Qly = <%=Ql[0] == "0" ? "0" : Ql[1]%>; |
||||||
|
uint256 constant Qrx = <%=Qr[0]%>; |
||||||
|
uint256 constant Qry = <%=Qr[0] == "0" ? "0" : Qr[1]%>; |
||||||
|
uint256 constant Qox = <%=Qo[0]%>; |
||||||
|
uint256 constant Qoy = <%=Qo[0] == "0" ? "0" : Qo[1]%>; |
||||||
|
uint256 constant Qcx = <%=Qc[0]%>; |
||||||
|
uint256 constant Qcy = <%=Qc[0] == "0" ? "0" : Qc[1]%>; |
||||||
|
uint256 constant S1x = <%=S1[0]%>; |
||||||
|
uint256 constant S1y = <%=S1[0] == "0" ? "0" : S1[1]%>; |
||||||
|
uint256 constant S2x = <%=S2[0]%>; |
||||||
|
uint256 constant S2y = <%=S2[0] == "0" ? "0" : S2[1]%>; |
||||||
|
uint256 constant S3x = <%=S3[0]%>; |
||||||
|
uint256 constant S3y = <%=S3[0] == "0" ? "0" : S3[1]%>; |
||||||
|
uint256 constant k1 = <%=k1%>; |
||||||
|
uint256 constant k2 = <%=k2%>; |
||||||
|
uint256 constant X2x1 = <%=X_2[0][0]%>; |
||||||
|
uint256 constant X2x2 = <%=X_2[0][1]%>; |
||||||
|
uint256 constant X2y1 = <%=X_2[1][0]%>; |
||||||
|
uint256 constant X2y2 = <%=X_2[1][1]%>; |
||||||
|
|
||||||
|
// Proof calldata |
||||||
|
// Byte offset of every parameter of the calldata |
||||||
|
// Polynomial commitments |
||||||
|
uint16 constant pA = 4 + 0; |
||||||
|
uint16 constant pB = 4 + 64; |
||||||
|
uint16 constant pC = 4 + 128; |
||||||
|
uint16 constant pZ = 4 + 192; |
||||||
|
uint16 constant pT1 = 4 + 256; |
||||||
|
uint16 constant pT2 = 4 + 320; |
||||||
|
uint16 constant pT3 = 4 + 384; |
||||||
|
uint16 constant pWxi = 4 + 448; |
||||||
|
uint16 constant pWxiw = 4 + 512; |
||||||
|
// Opening evaluations |
||||||
|
uint16 constant pEval_a = 4 + 576; |
||||||
|
uint16 constant pEval_b = 4 + 608; |
||||||
|
uint16 constant pEval_c = 4 + 640; |
||||||
|
uint16 constant pEval_s1 = 4 + 672; |
||||||
|
uint16 constant pEval_s2 = 4 + 704; |
||||||
|
uint16 constant pEval_zw = 4 + 736; |
||||||
|
|
||||||
|
// Memory data |
||||||
|
// Challenges |
||||||
|
uint16 constant pAlpha = 0; |
||||||
|
uint16 constant pBeta = 32; |
||||||
|
uint16 constant pGamma = 64; |
||||||
|
uint16 constant pXi = 96; |
||||||
|
uint16 constant pXin = 128; |
||||||
|
uint16 constant pBetaXi = 160; |
||||||
|
uint16 constant pV1 = 192; |
||||||
|
uint16 constant pV2 = 224; |
||||||
|
uint16 constant pV3 = 256; |
||||||
|
uint16 constant pV4 = 288; |
||||||
|
uint16 constant pV5 = 320; |
||||||
|
uint16 constant pU = 352; |
||||||
|
|
||||||
|
uint16 constant pPI = 384; |
||||||
|
uint16 constant pEval_r0 = 416; |
||||||
|
uint16 constant pD = 448; |
||||||
|
uint16 constant pF = 512; |
||||||
|
uint16 constant pE = 576; |
||||||
|
uint16 constant pTmp = 640; |
||||||
|
uint16 constant pAlpha2 = 704; |
||||||
|
uint16 constant pZh = 736; |
||||||
|
uint16 constant pZhInv = 768; |
||||||
|
|
||||||
|
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %> |
||||||
|
uint16 constant pEval_l<%=i%> = <%=768+i*32%>; |
||||||
|
<% } %> |
||||||
|
<% let pLastMem = 800+32*Math.max(nPublic,1) %> |
||||||
|
|
||||||
|
uint16 constant lastMem = <%=pLastMem%>; |
||||||
|
|
||||||
|
function verifyProof(uint256[24] calldata _proof, uint256[<%=nPublic%>] calldata _pubSignals) public view returns (bool) { |
||||||
|
assembly { |
||||||
|
///////// |
||||||
|
// Computes the inverse using the extended euclidean algorithm |
||||||
|
///////// |
||||||
|
function inverse(a, q) -> inv { |
||||||
|
let t := 0 |
||||||
|
let newt := 1 |
||||||
|
let r := q |
||||||
|
let newr := a |
||||||
|
let quotient |
||||||
|
let aux |
||||||
|
|
||||||
|
for { } newr { } { |
||||||
|
quotient := sdiv(r, newr) |
||||||
|
aux := sub(t, mul(quotient, newt)) |
||||||
|
t:= newt |
||||||
|
newt:= aux |
||||||
|
|
||||||
|
aux := sub(r,mul(quotient, newr)) |
||||||
|
r := newr |
||||||
|
newr := aux |
||||||
|
} |
||||||
|
|
||||||
|
if gt(r, 1) { revert(0,0) } |
||||||
|
if slt(t, 0) { t:= add(t, q) } |
||||||
|
|
||||||
|
inv := t |
||||||
|
} |
||||||
|
|
||||||
|
/////// |
||||||
|
// Computes the inverse of an array of values |
||||||
|
// See https://vitalik.ca/general/2018/07/21/starks_part_3.html in section where explain fields operations |
||||||
|
////// |
||||||
|
function inverseArray(pVals, n) { |
||||||
|
|
||||||
|
let pAux := mload(0x40) // Point to the next free position |
||||||
|
let pIn := pVals |
||||||
|
let lastPIn := add(pVals, mul(n, 32)) // Read n elemnts |
||||||
|
let acc := mload(pIn) // Read the first element |
||||||
|
pIn := add(pIn, 32) // Point to the second element |
||||||
|
let inv |
||||||
|
|
||||||
|
|
||||||
|
for { } lt(pIn, lastPIn) { |
||||||
|
pAux := add(pAux, 32) |
||||||
|
pIn := add(pIn, 32) |
||||||
|
} |
||||||
|
{ |
||||||
|
mstore(pAux, acc) |
||||||
|
acc := mulmod(acc, mload(pIn), q) |
||||||
|
} |
||||||
|
acc := inverse(acc, q) |
||||||
|
|
||||||
|
// At this point pAux pint to the next free position we substract 1 to point to the last used |
||||||
|
pAux := sub(pAux, 32) |
||||||
|
// pIn points to the n+1 element, we substract to point to n |
||||||
|
pIn := sub(pIn, 32) |
||||||
|
lastPIn := pVals // We don't process the first element |
||||||
|
for { } gt(pIn, lastPIn) { |
||||||
|
pAux := sub(pAux, 32) |
||||||
|
pIn := sub(pIn, 32) |
||||||
|
} |
||||||
|
{ |
||||||
|
inv := mulmod(acc, mload(pAux), q) |
||||||
|
acc := mulmod(acc, mload(pIn), q) |
||||||
|
mstore(pIn, inv) |
||||||
|
} |
||||||
|
// pIn points to first element, we just set it. |
||||||
|
mstore(pIn, acc) |
||||||
|
} |
||||||
|
|
||||||
|
function checkField(v) { |
||||||
|
if iszero(lt(v, q)) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
function checkInput() { |
||||||
|
checkField(calldataload(pEval_a)) |
||||||
|
checkField(calldataload(pEval_b)) |
||||||
|
checkField(calldataload(pEval_c)) |
||||||
|
checkField(calldataload(pEval_s1)) |
||||||
|
checkField(calldataload(pEval_s2)) |
||||||
|
checkField(calldataload(pEval_zw)) |
||||||
|
} |
||||||
|
|
||||||
|
function calculateChallenges(pMem, pPublic) { |
||||||
|
let beta |
||||||
|
let aux |
||||||
|
|
||||||
|
let mIn := mload(0x40) // Pointer to the next free memory position |
||||||
|
|
||||||
|
// Compute challenge.beta & challenge.gamma |
||||||
|
mstore(mIn, Qmx) |
||||||
|
mstore(add(mIn, 32), Qmy) |
||||||
|
mstore(add(mIn, 64), Qlx) |
||||||
|
mstore(add(mIn, 96), Qly) |
||||||
|
mstore(add(mIn, 128), Qrx) |
||||||
|
mstore(add(mIn, 160), Qry) |
||||||
|
mstore(add(mIn, 192), Qox) |
||||||
|
mstore(add(mIn, 224), Qoy) |
||||||
|
mstore(add(mIn, 256), Qcx) |
||||||
|
mstore(add(mIn, 288), Qcy) |
||||||
|
mstore(add(mIn, 320), S1x) |
||||||
|
mstore(add(mIn, 352), S1y) |
||||||
|
mstore(add(mIn, 384), S2x) |
||||||
|
mstore(add(mIn, 416), S2y) |
||||||
|
mstore(add(mIn, 448), S3x) |
||||||
|
mstore(add(mIn, 480), S3y) |
||||||
|
|
||||||
|
<%for (let i=0; i<nPublic;i++) {%> |
||||||
|
mstore(add(mIn, <%= 512 + i*32 %>), calldataload(add(pPublic, <%=i*32%>))) |
||||||
|
<%}%> |
||||||
|
mstore(add(mIn, <%= 512 + nPublic*32 + 0 %> ), calldataload(pA)) |
||||||
|
mstore(add(mIn, <%= 512 + nPublic*32 + 32 %> ), calldataload(add(pA, 32))) |
||||||
|
mstore(add(mIn, <%= 512 + nPublic*32 + 64 %> ), calldataload(pB)) |
||||||
|
mstore(add(mIn, <%= 512 + nPublic*32 + 96 %> ), calldataload(add(pB, 32))) |
||||||
|
mstore(add(mIn, <%= 512 + nPublic*32 + 128 %> ), calldataload(pC)) |
||||||
|
mstore(add(mIn, <%= 512 + nPublic*32 + 160 %> ), calldataload(add(pC, 32))) |
||||||
|
|
||||||
|
beta := mod(keccak256(mIn, <%= 704 + 32 * nPublic %>), q) |
||||||
|
mstore(add(pMem, pBeta), beta) |
||||||
|
|
||||||
|
// challenges.gamma |
||||||
|
mstore(add(pMem, pGamma), mod(keccak256(add(pMem, pBeta), 32), q)) |
||||||
|
|
||||||
|
// challenges.alpha |
||||||
|
mstore(mIn, mload(add(pMem, pBeta))) |
||||||
|
mstore(add(mIn, 32), mload(add(pMem, pGamma))) |
||||||
|
mstore(add(mIn, 64), calldataload(pZ)) |
||||||
|
mstore(add(mIn, 96), calldataload(add(pZ, 32))) |
||||||
|
|
||||||
|
aux := mod(keccak256(mIn, 128), q) |
||||||
|
mstore(add(pMem, pAlpha), aux) |
||||||
|
mstore(add(pMem, pAlpha2), mulmod(aux, aux, q)) |
||||||
|
|
||||||
|
// challenges.xi |
||||||
|
mstore(mIn, aux) |
||||||
|
mstore(add(mIn, 32), calldataload(pT1)) |
||||||
|
mstore(add(mIn, 64), calldataload(add(pT1, 32))) |
||||||
|
mstore(add(mIn, 96), calldataload(pT2)) |
||||||
|
mstore(add(mIn, 128), calldataload(add(pT2, 32))) |
||||||
|
mstore(add(mIn, 160), calldataload(pT3)) |
||||||
|
mstore(add(mIn, 192), calldataload(add(pT3, 32))) |
||||||
|
|
||||||
|
aux := mod(keccak256(mIn, 224), q) |
||||||
|
mstore( add(pMem, pXi), aux) |
||||||
|
|
||||||
|
// challenges.v |
||||||
|
mstore(mIn, aux) |
||||||
|
mstore(add(mIn, 32), calldataload(pEval_a)) |
||||||
|
mstore(add(mIn, 64), calldataload(pEval_b)) |
||||||
|
mstore(add(mIn, 96), calldataload(pEval_c)) |
||||||
|
mstore(add(mIn, 128), calldataload(pEval_s1)) |
||||||
|
mstore(add(mIn, 160), calldataload(pEval_s2)) |
||||||
|
mstore(add(mIn, 192), calldataload(pEval_zw)) |
||||||
|
|
||||||
|
let v1 := mod(keccak256(mIn, 224), q) |
||||||
|
mstore(add(pMem, pV1), v1) |
||||||
|
|
||||||
|
// challenges.beta * challenges.xi |
||||||
|
mstore(add(pMem, pBetaXi), mulmod(beta, aux, q)) |
||||||
|
|
||||||
|
// challenges.xi^n |
||||||
|
<%for (let i=0; i<power;i++) {%> |
||||||
|
aux:= mulmod(aux, aux, q) |
||||||
|
<%}%> |
||||||
|
mstore(add(pMem, pXin), aux) |
||||||
|
|
||||||
|
// Zh |
||||||
|
aux:= mod(add(sub(aux, 1), q), q) |
||||||
|
mstore(add(pMem, pZh), aux) |
||||||
|
mstore(add(pMem, pZhInv), aux) // We will invert later together with lagrange pols |
||||||
|
|
||||||
|
// challenges.v^2, challenges.v^3, challenges.v^4, challenges.v^5 |
||||||
|
aux := mulmod(v1, v1, q) |
||||||
|
mstore(add(pMem, pV2), aux) |
||||||
|
aux := mulmod(aux, v1, q) |
||||||
|
mstore(add(pMem, pV3), aux) |
||||||
|
aux := mulmod(aux, v1, q) |
||||||
|
mstore(add(pMem, pV4), aux) |
||||||
|
aux := mulmod(aux, v1, q) |
||||||
|
mstore(add(pMem, pV5), aux) |
||||||
|
|
||||||
|
// challenges.u |
||||||
|
mstore(mIn, calldataload(pWxi)) |
||||||
|
mstore(add(mIn, 32), calldataload(add(pWxi, 32))) |
||||||
|
mstore(add(mIn, 64), calldataload(pWxiw)) |
||||||
|
mstore(add(mIn, 96), calldataload(add(pWxiw, 32))) |
||||||
|
|
||||||
|
mstore(add(pMem, pU), mod(keccak256(mIn, 128), q)) |
||||||
|
} |
||||||
|
|
||||||
|
function calculateLagrange(pMem) { |
||||||
|
let w := 1 |
||||||
|
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %> |
||||||
|
mstore( |
||||||
|
add(pMem, pEval_l<%=i%>), |
||||||
|
mulmod( |
||||||
|
n, |
||||||
|
mod( |
||||||
|
add( |
||||||
|
sub( |
||||||
|
mload(add(pMem, pXi)), |
||||||
|
w |
||||||
|
), |
||||||
|
q |
||||||
|
), |
||||||
|
q |
||||||
|
), |
||||||
|
q |
||||||
|
) |
||||||
|
) |
||||||
|
<% if (i<Math.max(nPublic, 1)) { %> |
||||||
|
w := mulmod(w, w1, q) |
||||||
|
<% } %> |
||||||
|
<% } %> |
||||||
|
|
||||||
|
inverseArray(add(pMem, pZhInv), <%=Math.max(nPublic, 1)+1%> ) |
||||||
|
|
||||||
|
let zh := mload(add(pMem, pZh)) |
||||||
|
w := 1 |
||||||
|
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %> |
||||||
|
<% if (i==1) { %> |
||||||
|
mstore( |
||||||
|
add(pMem, pEval_l1 ), |
||||||
|
mulmod( |
||||||
|
mload(add(pMem, pEval_l1 )), |
||||||
|
zh, |
||||||
|
q |
||||||
|
) |
||||||
|
) |
||||||
|
<% } else { %> |
||||||
|
mstore( |
||||||
|
add(pMem, pEval_l<%=i%>), |
||||||
|
mulmod( |
||||||
|
w, |
||||||
|
mulmod( |
||||||
|
mload(add(pMem, pEval_l<%=i%>)), |
||||||
|
zh, |
||||||
|
q |
||||||
|
), |
||||||
|
q |
||||||
|
) |
||||||
|
) |
||||||
|
<% } %> |
||||||
|
<% if (i<Math.max(nPublic, 1)) { %> |
||||||
|
w := mulmod(w, w1, q) |
||||||
|
<% } %> |
||||||
|
<% } %> |
||||||
|
|
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
function calculatePI(pMem, pPub) { |
||||||
|
let pl := 0 |
||||||
|
|
||||||
|
<% for (let i=0; i<nPublic; i++) { %> |
||||||
|
pl := mod( |
||||||
|
add( |
||||||
|
sub( |
||||||
|
pl, |
||||||
|
mulmod( |
||||||
|
mload(add(pMem, pEval_l<%=i+1%>)), |
||||||
|
calldataload(add(pPub, <%=i*32%>)), |
||||||
|
q |
||||||
|
) |
||||||
|
), |
||||||
|
q |
||||||
|
), |
||||||
|
q |
||||||
|
) |
||||||
|
<% } %> |
||||||
|
|
||||||
|
mstore(add(pMem, pPI), pl) |
||||||
|
} |
||||||
|
|
||||||
|
function calculateR0(pMem) { |
||||||
|
let e1 := mload(add(pMem, pPI)) |
||||||
|
|
||||||
|
let e2 := mulmod(mload(add(pMem, pEval_l1)), mload(add(pMem, pAlpha2)), q) |
||||||
|
|
||||||
|
let e3a := addmod( |
||||||
|
calldataload(pEval_a), |
||||||
|
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s1), q), |
||||||
|
q) |
||||||
|
e3a := addmod(e3a, mload(add(pMem, pGamma)), q) |
||||||
|
|
||||||
|
let e3b := addmod( |
||||||
|
calldataload(pEval_b), |
||||||
|
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s2), q), |
||||||
|
q) |
||||||
|
e3b := addmod(e3b, mload(add(pMem, pGamma)), q) |
||||||
|
|
||||||
|
let e3c := addmod( |
||||||
|
calldataload(pEval_c), |
||||||
|
mload(add(pMem, pGamma)), |
||||||
|
q) |
||||||
|
|
||||||
|
let e3 := mulmod(mulmod(e3a, e3b, q), e3c, q) |
||||||
|
e3 := mulmod(e3, calldataload(pEval_zw), q) |
||||||
|
e3 := mulmod(e3, mload(add(pMem, pAlpha)), q) |
||||||
|
|
||||||
|
let r0 := addmod(e1, mod(sub(q, e2), q), q) |
||||||
|
r0 := addmod(r0, mod(sub(q, e3), q), q) |
||||||
|
|
||||||
|
mstore(add(pMem, pEval_r0) , r0) |
||||||
|
} |
||||||
|
|
||||||
|
function g1_set(pR, pP) { |
||||||
|
mstore(pR, mload(pP)) |
||||||
|
mstore(add(pR, 32), mload(add(pP,32))) |
||||||
|
} |
||||||
|
|
||||||
|
function g1_setC(pR, x, y) { |
||||||
|
mstore(pR, x) |
||||||
|
mstore(add(pR, 32), y) |
||||||
|
} |
||||||
|
|
||||||
|
function g1_calldataSet(pR, pP) { |
||||||
|
mstore(pR, calldataload(pP)) |
||||||
|
mstore(add(pR, 32), calldataload(add(pP, 32))) |
||||||
|
} |
||||||
|
|
||||||
|
function g1_acc(pR, pP) { |
||||||
|
let mIn := mload(0x40) |
||||||
|
mstore(mIn, mload(pR)) |
||||||
|
mstore(add(mIn,32), mload(add(pR, 32))) |
||||||
|
mstore(add(mIn,64), mload(pP)) |
||||||
|
mstore(add(mIn,96), mload(add(pP, 32))) |
||||||
|
|
||||||
|
let success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||||
|
|
||||||
|
if iszero(success) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
function g1_mulAcc(pR, pP, s) { |
||||||
|
let success |
||||||
|
let mIn := mload(0x40) |
||||||
|
mstore(mIn, mload(pP)) |
||||||
|
mstore(add(mIn,32), mload(add(pP, 32))) |
||||||
|
mstore(add(mIn,64), s) |
||||||
|
|
||||||
|
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64) |
||||||
|
|
||||||
|
if iszero(success) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
|
||||||
|
mstore(add(mIn,64), mload(pR)) |
||||||
|
mstore(add(mIn,96), mload(add(pR, 32))) |
||||||
|
|
||||||
|
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||||
|
|
||||||
|
if iszero(success) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
|
||||||
|
} |
||||||
|
|
||||||
|
function g1_mulAccC(pR, x, y, s) { |
||||||
|
let success |
||||||
|
let mIn := mload(0x40) |
||||||
|
mstore(mIn, x) |
||||||
|
mstore(add(mIn,32), y) |
||||||
|
mstore(add(mIn,64), s) |
||||||
|
|
||||||
|
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64) |
||||||
|
|
||||||
|
if iszero(success) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
|
||||||
|
mstore(add(mIn,64), mload(pR)) |
||||||
|
mstore(add(mIn,96), mload(add(pR, 32))) |
||||||
|
|
||||||
|
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||||
|
|
||||||
|
if iszero(success) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
function g1_mulSetC(pR, x, y, s) { |
||||||
|
let success |
||||||
|
let mIn := mload(0x40) |
||||||
|
mstore(mIn, x) |
||||||
|
mstore(add(mIn,32), y) |
||||||
|
mstore(add(mIn,64), s) |
||||||
|
|
||||||
|
success := staticcall(sub(gas(), 2000), 7, mIn, 96, pR, 64) |
||||||
|
|
||||||
|
if iszero(success) { |
||||||
|
mstore(0, 0) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
function g1_mulSet(pR, pP, s) { |
||||||
|
g1_mulSetC(pR, mload(pP), mload(add(pP, 32)), s) |
||||||
|
} |
||||||
|
|
||||||
|
function calculateD(pMem) { |
||||||
|
let _pD:= add(pMem, pD) |
||||||
|
let gamma := mload(add(pMem, pGamma)) |
||||||
|
let mIn := mload(0x40) |
||||||
|
mstore(0x40, add(mIn, 256)) // d1, d2, d3 & d4 (4*64 bytes) |
||||||
|
|
||||||
|
g1_setC(_pD, Qcx, Qcy) |
||||||
|
g1_mulAccC(_pD, Qmx, Qmy, mulmod(calldataload(pEval_a), calldataload(pEval_b), q)) |
||||||
|
g1_mulAccC(_pD, Qlx, Qly, calldataload(pEval_a)) |
||||||
|
g1_mulAccC(_pD, Qrx, Qry, calldataload(pEval_b)) |
||||||
|
g1_mulAccC(_pD, Qox, Qoy, calldataload(pEval_c)) |
||||||
|
|
||||||
|
let betaxi := mload(add(pMem, pBetaXi)) |
||||||
|
let val1 := addmod( |
||||||
|
addmod(calldataload(pEval_a), betaxi, q), |
||||||
|
gamma, q) |
||||||
|
|
||||||
|
let val2 := addmod( |
||||||
|
addmod( |
||||||
|
calldataload(pEval_b), |
||||||
|
mulmod(betaxi, k1, q), |
||||||
|
q), gamma, q) |
||||||
|
|
||||||
|
let val3 := addmod( |
||||||
|
addmod( |
||||||
|
calldataload(pEval_c), |
||||||
|
mulmod(betaxi, k2, q), |
||||||
|
q), gamma, q) |
||||||
|
|
||||||
|
let d2a := mulmod( |
||||||
|
mulmod(mulmod(val1, val2, q), val3, q), |
||||||
|
mload(add(pMem, pAlpha)), |
||||||
|
q |
||||||
|
) |
||||||
|
|
||||||
|
let d2b := mulmod( |
||||||
|
mload(add(pMem, pEval_l1)), |
||||||
|
mload(add(pMem, pAlpha2)), |
||||||
|
q |
||||||
|
) |
||||||
|
|
||||||
|
// We'll use mIn to save d2 |
||||||
|
g1_calldataSet(add(mIn, 192), pZ) |
||||||
|
g1_mulSet( |
||||||
|
mIn, |
||||||
|
add(mIn, 192), |
||||||
|
addmod(addmod(d2a, d2b, q), mload(add(pMem, pU)), q)) |
||||||
|
|
||||||
|
|
||||||
|
val1 := addmod( |
||||||
|
addmod( |
||||||
|
calldataload(pEval_a), |
||||||
|
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s1), q), |
||||||
|
q), gamma, q) |
||||||
|
|
||||||
|
val2 := addmod( |
||||||
|
addmod( |
||||||
|
calldataload(pEval_b), |
||||||
|
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s2), q), |
||||||
|
q), gamma, q) |
||||||
|
|
||||||
|
val3 := mulmod( |
||||||
|
mulmod(mload(add(pMem, pAlpha)), mload(add(pMem, pBeta)), q), |
||||||
|
calldataload(pEval_zw), q) |
||||||
|
|
||||||
|
|
||||||
|
// We'll use mIn + 64 to save d3 |
||||||
|
g1_mulSetC( |
||||||
|
add(mIn, 64), |
||||||
|
S3x, |
||||||
|
S3y, |
||||||
|
mulmod(mulmod(val1, val2, q), val3, q)) |
||||||
|
|
||||||
|
// We'll use mIn + 128 to save d4 |
||||||
|
g1_calldataSet(add(mIn, 128), pT1) |
||||||
|
|
||||||
|
g1_mulAccC(add(mIn, 128), calldataload(pT2), calldataload(add(pT2, 32)), mload(add(pMem, pXin))) |
||||||
|
let xin2 := mulmod(mload(add(pMem, pXin)), mload(add(pMem, pXin)), q) |
||||||
|
g1_mulAccC(add(mIn, 128), calldataload(pT3), calldataload(add(pT3, 32)) , xin2) |
||||||
|
|
||||||
|
g1_mulSetC(add(mIn, 128), mload(add(mIn, 128)), mload(add(mIn, 160)), mload(add(pMem, pZh))) |
||||||
|
|
||||||
|
mstore(add(add(mIn, 64), 32), mod(sub(qf, mload(add(add(mIn, 64), 32))), qf)) |
||||||
|
mstore(add(mIn, 160), mod(sub(qf, mload(add(mIn, 160))), qf)) |
||||||
|
g1_acc(_pD, mIn) |
||||||
|
g1_acc(_pD, add(mIn, 64)) |
||||||
|
g1_acc(_pD, add(mIn, 128)) |
||||||
|
} |
||||||
|
|
||||||
|
function calculateF(pMem) { |
||||||
|
let p := add(pMem, pF) |
||||||
|
|
||||||
|
g1_set(p, add(pMem, pD)) |
||||||
|
g1_mulAccC(p, calldataload(pA), calldataload(add(pA, 32)), mload(add(pMem, pV1))) |
||||||
|
g1_mulAccC(p, calldataload(pB), calldataload(add(pB, 32)), mload(add(pMem, pV2))) |
||||||
|
g1_mulAccC(p, calldataload(pC), calldataload(add(pC, 32)), mload(add(pMem, pV3))) |
||||||
|
g1_mulAccC(p, S1x, S1y, mload(add(pMem, pV4))) |
||||||
|
g1_mulAccC(p, S2x, S2y, mload(add(pMem, pV5))) |
||||||
|
} |
||||||
|
|
||||||
|
function calculateE(pMem) { |
||||||
|
let s := mod(sub(q, mload(add(pMem, pEval_r0))), q) |
||||||
|
|
||||||
|
s := addmod(s, mulmod(calldataload(pEval_a), mload(add(pMem, pV1)), q), q) |
||||||
|
s := addmod(s, mulmod(calldataload(pEval_b), mload(add(pMem, pV2)), q), q) |
||||||
|
s := addmod(s, mulmod(calldataload(pEval_c), mload(add(pMem, pV3)), q), q) |
||||||
|
s := addmod(s, mulmod(calldataload(pEval_s1), mload(add(pMem, pV4)), q), q) |
||||||
|
s := addmod(s, mulmod(calldataload(pEval_s2), mload(add(pMem, pV5)), q), q) |
||||||
|
s := addmod(s, mulmod(calldataload(pEval_zw), mload(add(pMem, pU)), q), q) |
||||||
|
|
||||||
|
g1_mulSetC(add(pMem, pE), G1x, G1y, s) |
||||||
|
} |
||||||
|
|
||||||
|
function checkPairing(pMem) -> isOk { |
||||||
|
let mIn := mload(0x40) |
||||||
|
mstore(0x40, add(mIn, 576)) // [0..383] = pairing data, [384..447] = pWxi, [448..512] = pWxiw |
||||||
|
|
||||||
|
let _pWxi := add(mIn, 384) |
||||||
|
let _pWxiw := add(mIn, 448) |
||||||
|
let _aux := add(mIn, 512) |
||||||
|
|
||||||
|
g1_calldataSet(_pWxi, pWxi) |
||||||
|
g1_calldataSet(_pWxiw, pWxiw) |
||||||
|
|
||||||
|
// A1 |
||||||
|
g1_mulSet(mIn, _pWxiw, mload(add(pMem, pU))) |
||||||
|
g1_acc(mIn, _pWxi) |
||||||
|
mstore(add(mIn, 32), mod(sub(qf, mload(add(mIn, 32))), qf)) |
||||||
|
|
||||||
|
// [X]_2 |
||||||
|
mstore(add(mIn,64), X2x2) |
||||||
|
mstore(add(mIn,96), X2x1) |
||||||
|
mstore(add(mIn,128), X2y2) |
||||||
|
mstore(add(mIn,160), X2y1) |
||||||
|
|
||||||
|
// B1 |
||||||
|
g1_mulSet(add(mIn, 192), _pWxi, mload(add(pMem, pXi))) |
||||||
|
|
||||||
|
let s := mulmod(mload(add(pMem, pU)), mload(add(pMem, pXi)), q) |
||||||
|
s := mulmod(s, w1, q) |
||||||
|
g1_mulSet(_aux, _pWxiw, s) |
||||||
|
g1_acc(add(mIn, 192), _aux) |
||||||
|
g1_acc(add(mIn, 192), add(pMem, pF)) |
||||||
|
mstore(add(pMem, add(pE, 32)), mod(sub(qf, mload(add(pMem, add(pE, 32)))), qf)) |
||||||
|
g1_acc(add(mIn, 192), add(pMem, pE)) |
||||||
|
|
||||||
|
// [1]_2 |
||||||
|
mstore(add(mIn,256), G2x2) |
||||||
|
mstore(add(mIn,288), G2x1) |
||||||
|
mstore(add(mIn,320), G2y2) |
||||||
|
mstore(add(mIn,352), G2y1) |
||||||
|
|
||||||
|
let success := staticcall(sub(gas(), 2000), 8, mIn, 384, mIn, 0x20) |
||||||
|
|
||||||
|
isOk := and(success, mload(mIn)) |
||||||
|
} |
||||||
|
|
||||||
|
let pMem := mload(0x40) |
||||||
|
mstore(0x40, add(pMem, lastMem)) |
||||||
|
|
||||||
|
checkInput() |
||||||
|
calculateChallenges(pMem, _pubSignals) |
||||||
|
calculateLagrange(pMem) |
||||||
|
calculatePI(pMem, _pubSignals) |
||||||
|
calculateR0(pMem) |
||||||
|
calculateD(pMem) |
||||||
|
calculateF(pMem) |
||||||
|
calculateE(pMem) |
||||||
|
let isValid := checkPairing(pMem) |
||||||
|
|
||||||
|
mstore(0x40, sub(pMem, lastMem)) |
||||||
|
mstore(0, isValid) |
||||||
|
return(0,0x20) |
||||||
|
} |
||||||
|
|
||||||
|
} |
||||||
|
} |
Loading…
Reference in new issue