parent
82abe56df8
commit
cfbd977225
@ -0,0 +1,876 @@ |
||||
export const GROTH16_VERIFIER = `// SPDX-License-Identifier: GPL-3.0
|
||||
/* |
||||
Copyright 2021 0KIMS association. |
||||
|
||||
This file is generated with [snarkJS](https://github.com/iden3/snarkjs).
|
||||
|
||||
snarkJS is a free software: you can redistribute it and/or modify it |
||||
under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
snarkJS is distributed in the hope that it will be useful, but WITHOUT |
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
||||
License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with snarkJS. If not, see <https://www.gnu.org/licenses/>. |
||||
*/ |
||||
|
||||
pragma solidity >=0.7.0 <0.9.0; |
||||
|
||||
contract Groth16Verifier { |
||||
// Scalar field size
|
||||
uint256 constant r = 21888242871839275222246405745257275088548364400416034343698204186575808495617; |
||||
// Base field size
|
||||
uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583; |
||||
|
||||
// Verification Key data
|
||||
uint256 constant alphax = <%= vk_alpha_1[0] %>; |
||||
uint256 constant alphay = <%= vk_alpha_1[1] %>; |
||||
uint256 constant betax1 = <%= vk_beta_2[0][1] %>; |
||||
uint256 constant betax2 = <%= vk_beta_2[0][0] %>; |
||||
uint256 constant betay1 = <%= vk_beta_2[1][1] %>; |
||||
uint256 constant betay2 = <%= vk_beta_2[1][0] %>; |
||||
uint256 constant gammax1 = <%= vk_gamma_2[0][1] %>; |
||||
uint256 constant gammax2 = <%= vk_gamma_2[0][0] %>; |
||||
uint256 constant gammay1 = <%= vk_gamma_2[1][1] %>; |
||||
uint256 constant gammay2 = <%= vk_gamma_2[1][0] %>; |
||||
uint256 constant deltax1 = <%= vk_delta_2[0][1] %>; |
||||
uint256 constant deltax2 = <%= vk_delta_2[0][0] %>; |
||||
uint256 constant deltay1 = <%= vk_delta_2[1][1] %>; |
||||
uint256 constant deltay2 = <%= vk_delta_2[1][0] %>; |
||||
|
||||
<% for (let i=0; i<IC.length; i++) { %> |
||||
uint256 constant IC<%=i%>x = <%=IC[i][0]%>; |
||||
uint256 constant IC<%=i%>y = <%=IC[i][1]%>; |
||||
<% } %> |
||||
|
||||
// Memory data
|
||||
uint16 constant pVk = 0; |
||||
uint16 constant pPairing = 128; |
||||
|
||||
uint16 constant pLastMem = 896; |
||||
|
||||
function verifyProof(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[<%=IC.length-1%>] calldata _pubSignals) public view returns (bool) { |
||||
assembly { |
||||
function checkField(v) { |
||||
if iszero(lt(v, q)) { |
||||
mstore(0, 0) |
||||
return(0, 0x20) |
||||
} |
||||
} |
||||
|
||||
// G1 function to multiply a G1 value(x,y) to value in an address
|
||||
function g1_mulAccC(pR, x, y, s) { |
||||
let success |
||||
let mIn := mload(0x40) |
||||
mstore(mIn, x) |
||||
mstore(add(mIn, 32), y) |
||||
mstore(add(mIn, 64), s) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0, 0x20) |
||||
} |
||||
|
||||
mstore(add(mIn, 64), mload(pR)) |
||||
mstore(add(mIn, 96), mload(add(pR, 32))) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0, 0x20) |
||||
} |
||||
} |
||||
|
||||
function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk { |
||||
let _pPairing := add(pMem, pPairing) |
||||
let _pVk := add(pMem, pVk) |
||||
|
||||
mstore(_pVk, IC0x) |
||||
mstore(add(_pVk, 32), IC0y) |
||||
|
||||
// Compute the linear combination vk_x
|
||||
<% for (let i = 1; i <= nPublic; i++) { %> |
||||
g1_mulAccC(_pVk, IC<%=i%>x, IC<%=i%>y, calldataload(add(pubSignals, <%=(i-1)*32%>))) |
||||
<% } %> |
||||
|
||||
// -A
|
||||
mstore(_pPairing, calldataload(pA)) |
||||
mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q)) |
||||
|
||||
// B
|
||||
mstore(add(_pPairing, 64), calldataload(pB)) |
||||
mstore(add(_pPairing, 96), calldataload(add(pB, 32))) |
||||
mstore(add(_pPairing, 128), calldataload(add(pB, 64))) |
||||
mstore(add(_pPairing, 160), calldataload(add(pB, 96))) |
||||
|
||||
// alpha1
|
||||
mstore(add(_pPairing, 192), alphax) |
||||
mstore(add(_pPairing, 224), alphay) |
||||
|
||||
// beta2
|
||||
mstore(add(_pPairing, 256), betax1) |
||||
mstore(add(_pPairing, 288), betax2) |
||||
mstore(add(_pPairing, 320), betay1) |
||||
mstore(add(_pPairing, 352), betay2) |
||||
|
||||
// vk_x
|
||||
mstore(add(_pPairing, 384), mload(add(pMem, pVk))) |
||||
mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32)))) |
||||
|
||||
|
||||
// gamma2
|
||||
mstore(add(_pPairing, 448), gammax1) |
||||
mstore(add(_pPairing, 480), gammax2) |
||||
mstore(add(_pPairing, 512), gammay1) |
||||
mstore(add(_pPairing, 544), gammay2) |
||||
|
||||
// C
|
||||
mstore(add(_pPairing, 576), calldataload(pC)) |
||||
mstore(add(_pPairing, 608), calldataload(add(pC, 32))) |
||||
|
||||
// delta2
|
||||
mstore(add(_pPairing, 640), deltax1) |
||||
mstore(add(_pPairing, 672), deltax2) |
||||
mstore(add(_pPairing, 704), deltay1) |
||||
mstore(add(_pPairing, 736), deltay2) |
||||
|
||||
|
||||
let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20) |
||||
|
||||
isOk := and(success, mload(_pPairing)) |
||||
} |
||||
|
||||
let pMem := mload(0x40) |
||||
mstore(0x40, add(pMem, pLastMem)) |
||||
|
||||
// Validate that all evaluations ∈ F
|
||||
<% for (let i=0; i<IC.length; i++) { %> |
||||
checkField(calldataload(add(_pubSignals, <%=i*32%>))) |
||||
<% } %> |
||||
|
||||
// Validate all evaluations
|
||||
let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem) |
||||
|
||||
mstore(0, isValid) |
||||
return(0, 0x20) |
||||
} |
||||
} |
||||
}` |
||||
|
||||
export const PLONK_VERIFIER = `// SPDX-License-Identifier: GPL-3.0
|
||||
/* |
||||
Copyright 2021 0KIMS association. |
||||
|
||||
This file is generated with [snarkJS](https://github.com/iden3/snarkjs).
|
||||
|
||||
snarkJS is a free software: you can redistribute it and/or modify it |
||||
under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
snarkJS is distributed in the hope that it will be useful, but WITHOUT |
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
||||
License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with snarkJS. If not, see <https://www.gnu.org/licenses/>. |
||||
*/ |
||||
|
||||
|
||||
pragma solidity >=0.7.0 <0.9.0; |
||||
|
||||
import "hardhat/console.sol"; |
||||
|
||||
contract PlonkVerifier { |
||||
// Omega
|
||||
uint256 constant w1 = <%=w%>;
|
||||
// Scalar field size
|
||||
uint256 constant q = 21888242871839275222246405745257275088548364400416034343698204186575808495617; |
||||
// Base field size
|
||||
uint256 constant qf = 21888242871839275222246405745257275088696311157297823662689037894645226208583; |
||||
|
||||
// [1]_1
|
||||
uint256 constant G1x = 1; |
||||
uint256 constant G1y = 2; |
||||
// [1]_2
|
||||
uint256 constant G2x1 = 10857046999023057135944570762232829481370756359578518086990519993285655852781; |
||||
uint256 constant G2x2 = 11559732032986387107991004021392285783925812861821192530917403151452391805634; |
||||
uint256 constant G2y1 = 8495653923123431417604973247489272438418190587263600148770280649306958101930; |
||||
uint256 constant G2y2 = 4082367875863433681332203403145435568316851327593401208105741076214120093531; |
||||
|
||||
// Verification Key data
|
||||
uint32 constant n = <%=2**power%>; |
||||
uint16 constant nPublic = <%=nPublic%>; |
||||
uint16 constant nLagrange = <%=Math.max(nPublic, 1)%>; |
||||
|
||||
uint256 constant Qmx = <%=Qm[0]%>; |
||||
uint256 constant Qmy = <%=Qm[0] == "0" ? "0" : Qm[1]%>; |
||||
uint256 constant Qlx = <%=Ql[0]%>; |
||||
uint256 constant Qly = <%=Ql[0] == "0" ? "0" : Ql[1]%>; |
||||
uint256 constant Qrx = <%=Qr[0]%>; |
||||
uint256 constant Qry = <%=Qr[0] == "0" ? "0" : Qr[1]%>; |
||||
uint256 constant Qox = <%=Qo[0]%>; |
||||
uint256 constant Qoy = <%=Qo[0] == "0" ? "0" : Qo[1]%>; |
||||
uint256 constant Qcx = <%=Qc[0]%>; |
||||
uint256 constant Qcy = <%=Qc[0] == "0" ? "0" : Qc[1]%>; |
||||
uint256 constant S1x = <%=S1[0]%>; |
||||
uint256 constant S1y = <%=S1[0] == "0" ? "0" : S1[1]%>; |
||||
uint256 constant S2x = <%=S2[0]%>; |
||||
uint256 constant S2y = <%=S2[0] == "0" ? "0" : S2[1]%>; |
||||
uint256 constant S3x = <%=S3[0]%>; |
||||
uint256 constant S3y = <%=S3[0] == "0" ? "0" : S3[1]%>; |
||||
uint256 constant k1 = <%=k1%>; |
||||
uint256 constant k2 = <%=k2%>; |
||||
uint256 constant X2x1 = <%=X_2[0][0]%>; |
||||
uint256 constant X2x2 = <%=X_2[0][1]%>; |
||||
uint256 constant X2y1 = <%=X_2[1][0]%>; |
||||
uint256 constant X2y2 = <%=X_2[1][1]%>; |
||||
|
||||
// Proof calldata
|
||||
// Byte offset of every parameter of the calldata
|
||||
// Polynomial commitments
|
||||
uint16 constant pA = 4 + 0; |
||||
uint16 constant pB = 4 + 64; |
||||
uint16 constant pC = 4 + 128; |
||||
uint16 constant pZ = 4 + 192; |
||||
uint16 constant pT1 = 4 + 256; |
||||
uint16 constant pT2 = 4 + 320; |
||||
uint16 constant pT3 = 4 + 384; |
||||
uint16 constant pWxi = 4 + 448; |
||||
uint16 constant pWxiw = 4 + 512; |
||||
// Opening evaluations
|
||||
uint16 constant pEval_a = 4 + 576; |
||||
uint16 constant pEval_b = 4 + 608; |
||||
uint16 constant pEval_c = 4 + 640; |
||||
uint16 constant pEval_s1 = 4 + 672; |
||||
uint16 constant pEval_s2 = 4 + 704; |
||||
uint16 constant pEval_zw = 4 + 736; |
||||
|
||||
// Memory data
|
||||
// Challenges
|
||||
uint16 constant pAlpha = 0; |
||||
uint16 constant pBeta = 32; |
||||
uint16 constant pGamma = 64; |
||||
uint16 constant pXi = 96; |
||||
uint16 constant pXin = 128; |
||||
uint16 constant pBetaXi = 160; |
||||
uint16 constant pV1 = 192; |
||||
uint16 constant pV2 = 224; |
||||
uint16 constant pV3 = 256; |
||||
uint16 constant pV4 = 288; |
||||
uint16 constant pV5 = 320; |
||||
uint16 constant pU = 352; |
||||
|
||||
uint16 constant pPI = 384; |
||||
uint16 constant pEval_r0 = 416; |
||||
uint16 constant pD = 448; |
||||
uint16 constant pF = 512; |
||||
uint16 constant pE = 576; |
||||
uint16 constant pTmp = 640; |
||||
uint16 constant pAlpha2 = 704; |
||||
uint16 constant pZh = 736; |
||||
uint16 constant pZhInv = 768; |
||||
|
||||
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %> |
||||
uint16 constant pEval_l<%=i%> = <%=768+i*32%>; |
||||
<% } %> |
||||
<% let pLastMem = 800+32*Math.max(nPublic,1) %> |
||||
|
||||
uint16 constant lastMem = <%=pLastMem%>; |
||||
|
||||
function verifyProof(uint256[24] calldata _proof, uint256[<%=nPublic%>] calldata _pubSignals) public view returns (bool) { |
||||
assembly { |
||||
/////////
|
||||
// Computes the inverse using the extended euclidean algorithm
|
||||
/////////
|
||||
function inverse(a, q) -> inv { |
||||
let t := 0
|
||||
let newt := 1 |
||||
let r := q
|
||||
let newr := a |
||||
let quotient |
||||
let aux |
||||
|
||||
for { } newr { } { |
||||
quotient := sdiv(r, newr) |
||||
aux := sub(t, mul(quotient, newt)) |
||||
t:= newt |
||||
newt:= aux |
||||
|
||||
aux := sub(r,mul(quotient, newr)) |
||||
r := newr |
||||
newr := aux |
||||
} |
||||
|
||||
if gt(r, 1) { revert(0,0) } |
||||
if slt(t, 0) { t:= add(t, q) } |
||||
|
||||
inv := t |
||||
} |
||||
|
||||
///////
|
||||
// Computes the inverse of an array of values
|
||||
// See https://vitalik.ca/general/2018/07/21/starks_part_3.html in section where explain fields operations
|
||||
//////
|
||||
function inverseArray(pVals, n) { |
||||
|
||||
let pAux := mload(0x40) // Point to the next free position
|
||||
let pIn := pVals |
||||
let lastPIn := add(pVals, mul(n, 32)) // Read n elements
|
||||
let acc := mload(pIn) // Read the first element
|
||||
pIn := add(pIn, 32) // Point to the second element
|
||||
let inv |
||||
|
||||
|
||||
for { } lt(pIn, lastPIn) {
|
||||
pAux := add(pAux, 32)
|
||||
pIn := add(pIn, 32) |
||||
}
|
||||
{ |
||||
mstore(pAux, acc) |
||||
acc := mulmod(acc, mload(pIn), q) |
||||
} |
||||
acc := inverse(acc, q) |
||||
|
||||
// At this point pAux pint to the next free position we subtract 1 to point to the last used
|
||||
pAux := sub(pAux, 32) |
||||
// pIn points to the n+1 element, we subtract to point to n
|
||||
pIn := sub(pIn, 32) |
||||
lastPIn := pVals // We don't process the first element
|
||||
for { } gt(pIn, lastPIn) {
|
||||
pAux := sub(pAux, 32)
|
||||
pIn := sub(pIn, 32) |
||||
}
|
||||
{ |
||||
inv := mulmod(acc, mload(pAux), q) |
||||
acc := mulmod(acc, mload(pIn), q) |
||||
mstore(pIn, inv) |
||||
} |
||||
// pIn points to first element, we just set it.
|
||||
mstore(pIn, acc) |
||||
} |
||||
|
||||
function checkField(v) { |
||||
if iszero(lt(v, q)) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
} |
||||
|
||||
function checkInput() { |
||||
checkField(calldataload(pEval_a)) |
||||
checkField(calldataload(pEval_b)) |
||||
checkField(calldataload(pEval_c)) |
||||
checkField(calldataload(pEval_s1)) |
||||
checkField(calldataload(pEval_s2)) |
||||
checkField(calldataload(pEval_zw)) |
||||
} |
||||
|
||||
function calculateChallenges(pMem, pPublic) { |
||||
let beta |
||||
let aux |
||||
|
||||
let mIn := mload(0x40) // Pointer to the next free memory position
|
||||
|
||||
// Compute challenge.beta & challenge.gamma
|
||||
mstore(mIn, Qmx) |
||||
mstore(add(mIn, 32), Qmy) |
||||
mstore(add(mIn, 64), Qlx) |
||||
mstore(add(mIn, 96), Qly) |
||||
mstore(add(mIn, 128), Qrx) |
||||
mstore(add(mIn, 160), Qry) |
||||
mstore(add(mIn, 192), Qox) |
||||
mstore(add(mIn, 224), Qoy) |
||||
mstore(add(mIn, 256), Qcx) |
||||
mstore(add(mIn, 288), Qcy) |
||||
mstore(add(mIn, 320), S1x) |
||||
mstore(add(mIn, 352), S1y) |
||||
mstore(add(mIn, 384), S2x) |
||||
mstore(add(mIn, 416), S2y) |
||||
mstore(add(mIn, 448), S3x) |
||||
mstore(add(mIn, 480), S3y) |
||||
|
||||
<%for (let i=0; i<nPublic;i++) {%> |
||||
mstore(add(mIn, <%= 512 + i*32 %>), calldataload(add(pPublic, <%=i*32%>))) |
||||
<%}%> |
||||
mstore(add(mIn, <%= 512 + nPublic*32 + 0 %> ), calldataload(pA)) |
||||
mstore(add(mIn, <%= 512 + nPublic*32 + 32 %> ), calldataload(add(pA, 32))) |
||||
mstore(add(mIn, <%= 512 + nPublic*32 + 64 %> ), calldataload(pB)) |
||||
mstore(add(mIn, <%= 512 + nPublic*32 + 96 %> ), calldataload(add(pB, 32))) |
||||
mstore(add(mIn, <%= 512 + nPublic*32 + 128 %> ), calldataload(pC)) |
||||
mstore(add(mIn, <%= 512 + nPublic*32 + 160 %> ), calldataload(add(pC, 32))) |
||||
|
||||
beta := mod(keccak256(mIn, <%= 704 + 32 * nPublic %>), q)
|
||||
mstore(add(pMem, pBeta), beta) |
||||
|
||||
// challenges.gamma
|
||||
mstore(add(pMem, pGamma), mod(keccak256(add(pMem, pBeta), 32), q)) |
||||
|
||||
// challenges.alpha
|
||||
mstore(mIn, mload(add(pMem, pBeta))) |
||||
mstore(add(mIn, 32), mload(add(pMem, pGamma))) |
||||
mstore(add(mIn, 64), calldataload(pZ)) |
||||
mstore(add(mIn, 96), calldataload(add(pZ, 32))) |
||||
|
||||
aux := mod(keccak256(mIn, 128), q) |
||||
mstore(add(pMem, pAlpha), aux) |
||||
mstore(add(pMem, pAlpha2), mulmod(aux, aux, q)) |
||||
|
||||
// challenges.xi
|
||||
mstore(mIn, aux) |
||||
mstore(add(mIn, 32), calldataload(pT1)) |
||||
mstore(add(mIn, 64), calldataload(add(pT1, 32))) |
||||
mstore(add(mIn, 96), calldataload(pT2)) |
||||
mstore(add(mIn, 128), calldataload(add(pT2, 32))) |
||||
mstore(add(mIn, 160), calldataload(pT3)) |
||||
mstore(add(mIn, 192), calldataload(add(pT3, 32))) |
||||
|
||||
aux := mod(keccak256(mIn, 224), q) |
||||
mstore( add(pMem, pXi), aux) |
||||
|
||||
// challenges.v
|
||||
mstore(mIn, aux) |
||||
mstore(add(mIn, 32), calldataload(pEval_a)) |
||||
mstore(add(mIn, 64), calldataload(pEval_b)) |
||||
mstore(add(mIn, 96), calldataload(pEval_c)) |
||||
mstore(add(mIn, 128), calldataload(pEval_s1)) |
||||
mstore(add(mIn, 160), calldataload(pEval_s2)) |
||||
mstore(add(mIn, 192), calldataload(pEval_zw)) |
||||
|
||||
let v1 := mod(keccak256(mIn, 224), q) |
||||
mstore(add(pMem, pV1), v1) |
||||
|
||||
// challenges.beta * challenges.xi
|
||||
mstore(add(pMem, pBetaXi), mulmod(beta, aux, q)) |
||||
|
||||
// challenges.xi^n
|
||||
<%for (let i=0; i<power;i++) {%> |
||||
aux:= mulmod(aux, aux, q) |
||||
<%}%> |
||||
mstore(add(pMem, pXin), aux) |
||||
|
||||
// Zh
|
||||
aux:= mod(add(sub(aux, 1), q), q) |
||||
mstore(add(pMem, pZh), aux) |
||||
mstore(add(pMem, pZhInv), aux) // We will invert later together with lagrange pols
|
||||
|
||||
// challenges.v^2, challenges.v^3, challenges.v^4, challenges.v^5
|
||||
aux := mulmod(v1, v1, q) |
||||
mstore(add(pMem, pV2), aux) |
||||
aux := mulmod(aux, v1, q) |
||||
mstore(add(pMem, pV3), aux) |
||||
aux := mulmod(aux, v1, q) |
||||
mstore(add(pMem, pV4), aux) |
||||
aux := mulmod(aux, v1, q) |
||||
mstore(add(pMem, pV5), aux) |
||||
|
||||
// challenges.u
|
||||
mstore(mIn, calldataload(pWxi)) |
||||
mstore(add(mIn, 32), calldataload(add(pWxi, 32))) |
||||
mstore(add(mIn, 64), calldataload(pWxiw)) |
||||
mstore(add(mIn, 96), calldataload(add(pWxiw, 32))) |
||||
|
||||
mstore(add(pMem, pU), mod(keccak256(mIn, 128), q)) |
||||
} |
||||
|
||||
function calculateLagrange(pMem) { |
||||
let w := 1
|
||||
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %> |
||||
mstore( |
||||
add(pMem, pEval_l<%=i%>),
|
||||
mulmod( |
||||
n,
|
||||
mod( |
||||
add( |
||||
sub( |
||||
mload(add(pMem, pXi)),
|
||||
w |
||||
),
|
||||
q |
||||
), |
||||
q |
||||
),
|
||||
q |
||||
) |
||||
) |
||||
<% if (i<Math.max(nPublic, 1)) { %> |
||||
w := mulmod(w, w1, q) |
||||
<% } %> |
||||
<% } %> |
||||
|
||||
inverseArray(add(pMem, pZhInv), <%=Math.max(nPublic, 1)+1%> ) |
||||
|
||||
let zh := mload(add(pMem, pZh)) |
||||
w := 1 |
||||
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %> |
||||
<% if (i==1) { %> |
||||
mstore( |
||||
add(pMem, pEval_l1 ),
|
||||
mulmod( |
||||
mload(add(pMem, pEval_l1 )), |
||||
zh, |
||||
q |
||||
) |
||||
) |
||||
<% } else { %> |
||||
mstore( |
||||
add(pMem, pEval_l<%=i%>),
|
||||
mulmod( |
||||
w, |
||||
mulmod( |
||||
mload(add(pMem, pEval_l<%=i%>)), |
||||
zh, |
||||
q |
||||
), |
||||
q |
||||
) |
||||
) |
||||
<% } %> |
||||
<% if (i<Math.max(nPublic, 1)) { %> |
||||
w := mulmod(w, w1, q) |
||||
<% } %> |
||||
<% } %> |
||||
|
||||
|
||||
} |
||||
|
||||
function calculatePI(pMem, pPub) { |
||||
let pl := 0 |
||||
|
||||
<% for (let i=0; i<nPublic; i++) { %>
|
||||
pl := mod( |
||||
add( |
||||
sub( |
||||
pl,
|
||||
mulmod( |
||||
mload(add(pMem, pEval_l<%=i+1%>)), |
||||
calldataload(add(pPub, <%=i*32%>)), |
||||
q |
||||
) |
||||
), |
||||
q |
||||
), |
||||
q |
||||
) |
||||
<% } %> |
||||
|
||||
mstore(add(pMem, pPI), pl) |
||||
} |
||||
|
||||
function calculateR0(pMem) { |
||||
let e1 := mload(add(pMem, pPI)) |
||||
|
||||
let e2 := mulmod(mload(add(pMem, pEval_l1)), mload(add(pMem, pAlpha2)), q) |
||||
|
||||
let e3a := addmod( |
||||
calldataload(pEval_a), |
||||
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s1), q), |
||||
q) |
||||
e3a := addmod(e3a, mload(add(pMem, pGamma)), q) |
||||
|
||||
let e3b := addmod( |
||||
calldataload(pEval_b), |
||||
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s2), q), |
||||
q) |
||||
e3b := addmod(e3b, mload(add(pMem, pGamma)), q) |
||||
|
||||
let e3c := addmod( |
||||
calldataload(pEval_c), |
||||
mload(add(pMem, pGamma)), |
||||
q) |
||||
|
||||
let e3 := mulmod(mulmod(e3a, e3b, q), e3c, q) |
||||
e3 := mulmod(e3, calldataload(pEval_zw), q) |
||||
e3 := mulmod(e3, mload(add(pMem, pAlpha)), q) |
||||
|
||||
let r0 := addmod(e1, mod(sub(q, e2), q), q) |
||||
r0 := addmod(r0, mod(sub(q, e3), q), q) |
||||
|
||||
mstore(add(pMem, pEval_r0) , r0) |
||||
} |
||||
|
||||
function g1_set(pR, pP) { |
||||
mstore(pR, mload(pP)) |
||||
mstore(add(pR, 32), mload(add(pP,32))) |
||||
}
|
||||
|
||||
function g1_setC(pR, x, y) { |
||||
mstore(pR, x) |
||||
mstore(add(pR, 32), y) |
||||
} |
||||
|
||||
function g1_calldataSet(pR, pP) { |
||||
mstore(pR, calldataload(pP)) |
||||
mstore(add(pR, 32), calldataload(add(pP, 32))) |
||||
} |
||||
|
||||
function g1_acc(pR, pP) { |
||||
let mIn := mload(0x40) |
||||
mstore(mIn, mload(pR)) |
||||
mstore(add(mIn,32), mload(add(pR, 32))) |
||||
mstore(add(mIn,64), mload(pP)) |
||||
mstore(add(mIn,96), mload(add(pP, 32))) |
||||
|
||||
let success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
} |
||||
|
||||
function g1_mulAcc(pR, pP, s) { |
||||
let success |
||||
let mIn := mload(0x40) |
||||
mstore(mIn, mload(pP)) |
||||
mstore(add(mIn,32), mload(add(pP, 32))) |
||||
mstore(add(mIn,64), s) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
|
||||
mstore(add(mIn,64), mload(pR)) |
||||
mstore(add(mIn,96), mload(add(pR, 32))) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
|
||||
} |
||||
|
||||
function g1_mulAccC(pR, x, y, s) { |
||||
let success |
||||
let mIn := mload(0x40) |
||||
mstore(mIn, x) |
||||
mstore(add(mIn,32), y) |
||||
mstore(add(mIn,64), s) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
|
||||
mstore(add(mIn,64), mload(pR)) |
||||
mstore(add(mIn,96), mload(add(pR, 32))) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
} |
||||
|
||||
function g1_mulSetC(pR, x, y, s) { |
||||
let success |
||||
let mIn := mload(0x40) |
||||
mstore(mIn, x) |
||||
mstore(add(mIn,32), y) |
||||
mstore(add(mIn,64), s) |
||||
|
||||
success := staticcall(sub(gas(), 2000), 7, mIn, 96, pR, 64) |
||||
|
||||
if iszero(success) { |
||||
mstore(0, 0) |
||||
return(0,0x20) |
||||
} |
||||
} |
||||
|
||||
function g1_mulSet(pR, pP, s) { |
||||
g1_mulSetC(pR, mload(pP), mload(add(pP, 32)), s) |
||||
} |
||||
|
||||
function calculateD(pMem) { |
||||
let _pD:= add(pMem, pD) |
||||
let gamma := mload(add(pMem, pGamma)) |
||||
let mIn := mload(0x40) |
||||
mstore(0x40, add(mIn, 256)) // d1, d2, d3 & d4 (4*64 bytes)
|
||||
|
||||
g1_setC(_pD, Qcx, Qcy) |
||||
g1_mulAccC(_pD, Qmx, Qmy, mulmod(calldataload(pEval_a), calldataload(pEval_b), q)) |
||||
g1_mulAccC(_pD, Qlx, Qly, calldataload(pEval_a)) |
||||
g1_mulAccC(_pD, Qrx, Qry, calldataload(pEval_b)) |
||||
g1_mulAccC(_pD, Qox, Qoy, calldataload(pEval_c))
|
||||
|
||||
let betaxi := mload(add(pMem, pBetaXi)) |
||||
let val1 := addmod( |
||||
addmod(calldataload(pEval_a), betaxi, q), |
||||
gamma, q) |
||||
|
||||
let val2 := addmod( |
||||
addmod( |
||||
calldataload(pEval_b), |
||||
mulmod(betaxi, k1, q), |
||||
q), gamma, q) |
||||
|
||||
let val3 := addmod( |
||||
addmod( |
||||
calldataload(pEval_c), |
||||
mulmod(betaxi, k2, q), |
||||
q), gamma, q) |
||||
|
||||
let d2a := mulmod( |
||||
mulmod(mulmod(val1, val2, q), val3, q), |
||||
mload(add(pMem, pAlpha)), |
||||
q |
||||
) |
||||
|
||||
let d2b := mulmod( |
||||
mload(add(pMem, pEval_l1)), |
||||
mload(add(pMem, pAlpha2)), |
||||
q |
||||
) |
||||
|
||||
// We'll use mIn to save d2
|
||||
g1_calldataSet(add(mIn, 192), pZ) |
||||
g1_mulSet( |
||||
mIn, |
||||
add(mIn, 192), |
||||
addmod(addmod(d2a, d2b, q), mload(add(pMem, pU)), q)) |
||||
|
||||
|
||||
val1 := addmod( |
||||
addmod( |
||||
calldataload(pEval_a), |
||||
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s1), q), |
||||
q), gamma, q) |
||||
|
||||
val2 := addmod( |
||||
addmod( |
||||
calldataload(pEval_b), |
||||
mulmod(mload(add(pMem, pBeta)), calldataload(pEval_s2), q), |
||||
q), gamma, q) |
||||
|
||||
val3 := mulmod( |
||||
mulmod(mload(add(pMem, pAlpha)), mload(add(pMem, pBeta)), q), |
||||
calldataload(pEval_zw), q) |
||||
|
||||
|
||||
// We'll use mIn + 64 to save d3
|
||||
g1_mulSetC( |
||||
add(mIn, 64), |
||||
S3x, |
||||
S3y, |
||||
mulmod(mulmod(val1, val2, q), val3, q)) |
||||
|
||||
// We'll use mIn + 128 to save d4
|
||||
g1_calldataSet(add(mIn, 128), pT1) |
||||
|
||||
g1_mulAccC(add(mIn, 128), calldataload(pT2), calldataload(add(pT2, 32)), mload(add(pMem, pXin))) |
||||
let xin2 := mulmod(mload(add(pMem, pXin)), mload(add(pMem, pXin)), q) |
||||
g1_mulAccC(add(mIn, 128), calldataload(pT3), calldataload(add(pT3, 32)) , xin2) |
||||
|
||||
g1_mulSetC(add(mIn, 128), mload(add(mIn, 128)), mload(add(mIn, 160)), mload(add(pMem, pZh))) |
||||
|
||||
mstore(add(add(mIn, 64), 32), mod(sub(qf, mload(add(add(mIn, 64), 32))), qf)) |
||||
mstore(add(mIn, 160), mod(sub(qf, mload(add(mIn, 160))), qf)) |
||||
g1_acc(_pD, mIn) |
||||
g1_acc(_pD, add(mIn, 64)) |
||||
g1_acc(_pD, add(mIn, 128)) |
||||
} |
||||
|
||||
function calculateF(pMem) { |
||||
let p := add(pMem, pF) |
||||
|
||||
g1_set(p, add(pMem, pD)) |
||||
g1_mulAccC(p, calldataload(pA), calldataload(add(pA, 32)), mload(add(pMem, pV1))) |
||||
g1_mulAccC(p, calldataload(pB), calldataload(add(pB, 32)), mload(add(pMem, pV2))) |
||||
g1_mulAccC(p, calldataload(pC), calldataload(add(pC, 32)), mload(add(pMem, pV3))) |
||||
g1_mulAccC(p, S1x, S1y, mload(add(pMem, pV4))) |
||||
g1_mulAccC(p, S2x, S2y, mload(add(pMem, pV5))) |
||||
} |
||||
|
||||
function calculateE(pMem) { |
||||
let s := mod(sub(q, mload(add(pMem, pEval_r0))), q) |
||||
|
||||
s := addmod(s, mulmod(calldataload(pEval_a), mload(add(pMem, pV1)), q), q) |
||||
s := addmod(s, mulmod(calldataload(pEval_b), mload(add(pMem, pV2)), q), q) |
||||
s := addmod(s, mulmod(calldataload(pEval_c), mload(add(pMem, pV3)), q), q) |
||||
s := addmod(s, mulmod(calldataload(pEval_s1), mload(add(pMem, pV4)), q), q) |
||||
s := addmod(s, mulmod(calldataload(pEval_s2), mload(add(pMem, pV5)), q), q) |
||||
s := addmod(s, mulmod(calldataload(pEval_zw), mload(add(pMem, pU)), q), q) |
||||
|
||||
g1_mulSetC(add(pMem, pE), G1x, G1y, s) |
||||
} |
||||
|
||||
function checkPairing(pMem) -> isOk { |
||||
let mIn := mload(0x40) |
||||
mstore(0x40, add(mIn, 576)) // [0..383] = pairing data, [384..447] = pWxi, [448..512] = pWxiw
|
||||
|
||||
let _pWxi := add(mIn, 384) |
||||
let _pWxiw := add(mIn, 448) |
||||
let _aux := add(mIn, 512) |
||||
|
||||
g1_calldataSet(_pWxi, pWxi) |
||||
g1_calldataSet(_pWxiw, pWxiw) |
||||
|
||||
// A1
|
||||
g1_mulSet(mIn, _pWxiw, mload(add(pMem, pU))) |
||||
g1_acc(mIn, _pWxi) |
||||
mstore(add(mIn, 32), mod(sub(qf, mload(add(mIn, 32))), qf)) |
||||
|
||||
// [X]_2
|
||||
mstore(add(mIn,64), X2x2) |
||||
mstore(add(mIn,96), X2x1) |
||||
mstore(add(mIn,128), X2y2) |
||||
mstore(add(mIn,160), X2y1) |
||||
|
||||
// B1
|
||||
g1_mulSet(add(mIn, 192), _pWxi, mload(add(pMem, pXi))) |
||||
|
||||
let s := mulmod(mload(add(pMem, pU)), mload(add(pMem, pXi)), q) |
||||
s := mulmod(s, w1, q) |
||||
g1_mulSet(_aux, _pWxiw, s) |
||||
g1_acc(add(mIn, 192), _aux) |
||||
g1_acc(add(mIn, 192), add(pMem, pF)) |
||||
mstore(add(pMem, add(pE, 32)), mod(sub(qf, mload(add(pMem, add(pE, 32)))), qf)) |
||||
g1_acc(add(mIn, 192), add(pMem, pE)) |
||||
|
||||
// [1]_2
|
||||
mstore(add(mIn,256), G2x2) |
||||
mstore(add(mIn,288), G2x1) |
||||
mstore(add(mIn,320), G2y2) |
||||
mstore(add(mIn,352), G2y1) |
||||
|
||||
let success := staticcall(sub(gas(), 2000), 8, mIn, 384, mIn, 0x20) |
||||
|
||||
isOk := and(success, mload(mIn)) |
||||
} |
||||
|
||||
let pMem := mload(0x40) |
||||
mstore(0x40, add(pMem, lastMem)) |
||||
|
||||
checkInput() |
||||
calculateChallenges(pMem, _pubSignals) |
||||
calculateLagrange(pMem) |
||||
calculatePI(pMem, _pubSignals) |
||||
calculateR0(pMem) |
||||
calculateD(pMem) |
||||
calculateF(pMem) |
||||
calculateE(pMem) |
||||
let isValid := checkPairing(pMem) |
||||
|
||||
mstore(0x40, sub(pMem, lastMem)) |
||||
mstore(0, isValid) |
||||
return(0,0x20) |
||||
} |
||||
|
||||
} |
||||
}` |
@ -1,34 +1,29 @@ |
||||
import { CustomTooltip, RenderIf, RenderIfNot } from "@remix-ui/helper" |
||||
import { useContext } from "react" |
||||
import { CircuitAppContext } from "../contexts" |
||||
import { CustomTooltip } from "@remix-ui/helper" |
||||
import { FormattedMessage } from "react-intl" |
||||
|
||||
export function SetupExportsBtn () { |
||||
const { plugin, appState } = useContext(CircuitAppContext) |
||||
|
||||
return ( |
||||
<button |
||||
className="btn btn-secondary btn-block d-block w-100 text-break mt-2" |
||||
> |
||||
<CustomTooltip |
||||
placement="auto" |
||||
tooltipId="overlay-tooltip-compile" |
||||
tooltipText={ |
||||
<div className="text-left"> |
||||
<div> |
||||
export function SetupExportsBtn ({ handleRunSetup }: { handleRunSetup: () => void }) { |
||||
return <button |
||||
className="btn btn-secondary btn-block d-block w-100 text-break mt-2" |
||||
onClick={handleRunSetup} |
||||
> |
||||
<CustomTooltip |
||||
placement="auto" |
||||
tooltipId="overlay-tooltip-compile" |
||||
tooltipText={ |
||||
<div className="text-left"> |
||||
<div> |
||||
Click to setup and export verification keys |
||||
</div> |
||||
</div> |
||||
} |
||||
> |
||||
<div className="d-flex align-items-center justify-content-center"> |
||||
<div className="text-truncate overflow-hidden text-nowrap"> |
||||
<span> |
||||
<FormattedMessage id="circuit.runSetup" /> |
||||
</span> |
||||
</div> |
||||
</div> |
||||
</CustomTooltip> |
||||
</button> |
||||
) |
||||
} |
||||
> |
||||
<div className="d-flex align-items-center justify-content-center"> |
||||
<div className="text-truncate overflow-hidden text-nowrap"> |
||||
<span> |
||||
<FormattedMessage id="circuit.runSetup" /> |
||||
</span> |
||||
</div> |
||||
</div> |
||||
</CustomTooltip> |
||||
</button> |
||||
} |
Loading…
Reference in new issue