Assuming the following scenario where a miner has 15% of all hashing
power and the ability to exert a moderate control over the network to
the point where if the attacker sees a message A, it can't stop A from
propagating, but what it **can** do is send a message B and ensure that
most nodes see B before A. The attacker can then selfish mine and
augment selfish mining strategy by giving his own blocks an advantage.
This change makes the time at which a block is received less relevant
and so the level of control an attacker has over the network no longer
makes a difference.
This change changes the current td algorithm `B_td > C_td` to the new
algorithm `B_td > C_td || B_td == C_td && rnd < 0.5`.
* Removed some strange code that didn't apply state reverting properly
* Refactored code setting from vm & state transition to the executioner
* Updated tests
* change gas cost for contract creating txs
* invalidate signature with s value greater than secp256k1 N / 2
* OOG contract creation if not enough gas to store code
* new difficulty adjustment algorithm
* new DELEGATECALL op code
Pending logs are now filterable through the Go API. Filter API changed
such that each filter type has it's own bucket and adding filter
explicitly requires you specify the bucket to put it in.
Implemented `runtime.Call` which uses - unlike Execute - the given state
for the execution and the address of the contract you wish to execute.
Unlike `Execute`, `Call` requires a config.
Removed old unmarshalling of return types: `abi.Call(...).([]byte)`.
This is now replaced by a new syntax:
```
var a []byte
err := abi.Call(&a, ...)
```
It also addresses a few issues with Bytes and Strings and can also
handle both fixed and arbitrary sized byte slices, including strings.
This PR fixes a regression of the RPC where the default gas price that
was being used for transaction wasn't properly using the GPO. This PR
adds the GPO back to suggest gas prices rather than the hardcoded
default of 10000000000000.
Closes#2194